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Abstract

This dissertation focuses on a class of boundary value problems modeling scat-

tering phenomena in bifurcated and trifurcated waveguides involving structural

discontinuities. The study is important because of its applications in active noise

control measures, especially used to control the low frequency noise and related vi-

brations. The physical problems are modeled to illustrate the scattering behavior

of acoustic waves in the planar as well as flexible waveguides comprised of thin elas-

tic elements with structural discontinuities along edges. The resulting problems

are governed by Helmholtz’s equation together with Dirichlet, Neumann, Robin,

and/or higher-order boundary conditions. The Mode-Matching (MM) scheme is

adopted to solve the governing boundary value problems. The solution is devel-

oped for the analysis of symmetric, uniform and non-uniform cross sections. The

eigenvalue problems associated with rigid, soft, or impedance type boundary con-

ditions fall into the Strum-Liouville (SL) category and the eigenfunctions happen

to be orthogonal. However, when higher-order boundary conditions are involved,

the eigenfunctions are no more orthogonal and the resulting eigen-sub-systems

turns out to be non-Strum-Liouville. It makes the use of generalized orthogonal

characteristics indispensable to guarantee the pointwise convergence of the solu-

tion. In the process of converting differential systems to linear algebraic systems,

orthogonal characteristics are taken into account. Additional constants that are

found through the application of appropriate edge conditions are governed by the

application of the generalised orthogonality relation (OR). To describe physical

attributes of the modelled structures, the systems are truncated and inverted. By

analyzing the numerical solutions, we discuss the transmission of acoustic waves

traveling through the prototype waveguide geometries and study the behavior of

the radiated energy versus the variations of the geometric discontinuities, mate-

rial contrasts, and bounding properties. It is worth mentioning that underlying

structures are closely related with silencer geometries in practical context.
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h̄ = 5ā, p = q = r = s = µ = κ = 1 and L̄ = 0.25m by varying
height (k × a). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Planar trifurcated waveguide, when f = 230Hz, b̄ = h̄ = 3ā, p =
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Chapter 1

Introduction

The theory of noise reduction has become a dynamic area of research because of

industrial advancements at a large scale. This study is essential regarding exhaust

systems, steam valves, vehicles, turbofan engines, ducts, and pipes. Generally, the

guided wave systems are more efficient carriers of acoustic energy curtailing lateral

diffusion that ultimately resists decaying sound waves according to inverse square

law. The remarkable interest in the field is thriving due to the necessity to plane

and defined structures in which underlying vibrations and the transmission of

related noise can be controlled. One type of noise, for instance, is wave scattering

at a discontinuity in an object’s or structure’s material properties.

Over the years, a range of interesting and challenging problems that involve wave

scattering analysis in bifurcated and trifurcated waveguide channels have been dis-

cussed by many researchers. The interest to minimize the noise pollution impend-

ing from the heating ventilation and air conditioning (HVAC) system of structures

or automotive exhaust systems of vehicles or aircraft has stipulated the continued

interest. The dissipative silencers containing complex geometrical shapes and bulk

reacting materials have been modeled to attenuate the broad-band noise. To incor-

porate these theoretical models, several analytical and numerical techniques have

been established thus far. The objective of these experiments is to see how differ-

ent channel designs and material properties affect sound attenuation in numerous

contexts. [1–4].

1
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Many authors have studied how to reduce unwanted noise by aligning walls in

a parallel plate configuration and using rigid, soft, or impedance-type boundary

features. For example, the studies [5–8] include the acoustic scattering in planar

trifurcated waveguides containing rigid, soft, or porous lining along with stationary

and moving compressible fluid medium. The duct segments in all of these cases

have constant geometrical and physical features, so the single field model is still

appropriate.

The Wiener-Hopf (WH) solution is obtained by using integral formulations in the

Fourier domain. Unfortunately, the WH approach is ineffective for more complex

geometrical and physical features when the wavenumber spectrum in the waveg-

uide is not continuous. Many researchers contributed to the study of acoustic wave

diffraction in a planar trifurcated waveguide with various bounding characteris-

tics; see, for example, [9–12]. Despite these achievements, no attempt has been

made to investigate trifurcated waveguides in more practical scenarios by taking

step discontinuities into account. The classical WH technique fails to provide scat-

tered fields for such ducting systems. However, so-called mode-matching (MM)

techniques have proven to be extremely beneficial for situations involving more

complex geometries, as well as a variety of media and material properties.

These methods were initially designed to manage canonical problems represented

by Laplace or Helmholtz equations and the ducts or channel boundaries described

by Dirichlet, Neumann, or Robin boundary conditions. Matching modes are widely

used to identify the reflection and transmission of waves across interfaces at dis-

continuities in pipes and ducts; see, for example, [13–16].

The key challenge is to deal with geometric discontinuities at duct segment plane

connections (junctions). Even while it has generally been possible to investigate

at a simple non-uniform geometry with modest dimensions, the study of acoustic

radiation from structural discontinuities goes back to Rayleigh[17].

However, Bostrom [18] and Miles [19], and more recently, Nawaz and Lawrie [20]

and Nawaz et al. [21], discussed the sound scattering from structural discontinu-

ities together with obstacles at a finite junction. To match the scattering modes,
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continuity conditions of pressures and normal velocities at aperture are applied. In

normal velocity fields, geometric discontinuities are observed, and various modes

are allowed to propagate.

Many scientists and engineers addressed the issue of noise reduction by considering

different material properties of ducts together with diverse geometrical designs.

Rawlins [22] was among the first ones who discussed noise reduction through a

duct having a thin acoustical absorbent lining.

Demir and Buyukaksoy [23] noted that covering a duct’s walls with acoustically ab-

sorbent material can considerably increase the duct’s acoustic performance. Morse

[24] investigated the attenuation of sound in infinite closed ducts using acousti-

cally absorbent liners. Later, it is confirmed through experiments that lining a

waveguide with an acoustically absorbent material creates an additional sound

absorption.

Jones [25] addressed the problem of scattering of plane waves from three parallel

soft semi-infinite and equidistant plates and computed the far-field and near-zone

solutions. Later, Asghar et al. [26] extended Jones’ analysis for the case of a line

source and a point source scattering in still air when the medium is convective.

On the other hand, the studies [27–30] dealt with the acoustic scattering in planar

trifurcated waveguides containing rigid, soft, or porous linings together with sta-

tionary and moving compressible fluid medium. In all such cases, the wavenumber

observed a continuous spectrum and thus, the use of Fourier transform remained

suitable.

The wave scattering of bifurcated and trifurcated waveguide structures is a subject

of great interest for many researchers. The primary goal is to control the noise

emanated from different unwanted sources placed in large industrial zones. The

dissipative silencers containing complex geometrical shapes and bulk reacting ma-

terials have been modeled to attenuate the broad-band noise. To date, a variety

of analytical and numerical techniques have been used to investigate different the-

oretical models. The major goal of these investigations was to look into the sound

attenuation region in relation to various channel designs and material properties
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The design of the geometry of the expansion chamber is imperative in reducing

noise levels in mechanical systems such as ducts, pipes, and compressors. Selamet

and Radavich [33] studied the effect of chamber length on the non-planar wave

propagation in concentric expansion chambers. Selamat and Ji [34] discussed the

acoustical attenuation performances of circular expansion chamber silencers with

an extended inlet and outlet and a circular dual-chamber silencer. They observed

that, as the length of the chamber increases, the number of domes increases but

remains the same as the simple expansion chambers. Similarly, as the length of

the extended ducts is increased, the number of resonant peaks increases, and the

resonant frequencies decrease.

Abom [35] studied the effects of higher-order modes to evaluate the acoustical per-

formance of an expansion chamber with an extended inlet and outlet. Bouykoksi

and Polat [36] utilized the WH approach immersed with MM analysis to discuss the

acoustic scattering in a bifurcated waveguide with rigid/soft boundary conditions.

Rawlins [37] proved that by using acoustically absorbent linings, the unwanted

noise within a waveguide can be reduced. He discussed that the acoustic perfor-

mance of a duct can be increased by lining its walls with acoustically absorbent

material.

Huang [38] developed the so-called plate silencers with side-branch cavities cov-

ered by flexible plates, which give rise to noise attenuation through wave reflection

towards the upstream. The work was later on extended to sandwich plates to facil-

itate practical implementations [39]. Afterwards, Lapin [40] examined the sound

attenuation and presented fundamental relations in the analysis of the propagation

of acoustic waves in waveguides with liners, moving filler media, and reflectors.

Recent studies include the acoustic scattering in two planar trifurcated waveguides

comprised of an expansion chamber containing rigid, soft, or porous lining together

with stationary and moving compressible fluid medium. The well-known WH tech-

nique has been used to solve most canonical problems. However, the complication

of such underlying structures created essential difficulties in the application of the

WH technique.
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Numerous authors contributed to the study of acoustic wave diffraction in planar

trifurcated waveguides with different boundary conditions. Yet, no attempt has

been made to analyze trifurcated waveguides in more practical contexts by con-

sidering expansion chambers with multiple step-discontinuities. It is important to

mention that diffraction in waveguides, with different combinations of the bound-

ary conditions with and without structural discontinuities, is the topic of current

interest [41–44].

The study of the impacts of unwanted noise has been an active area of research

because of its technological importance. This study is significant regarding exhaust

systems, steam valves, internal combustion engines of aircraft and vehicles, ducts,

and pipes. The analysis of wave scattering by different structures is an important

area of noise reduction. Specifically, Rawlins [45, 46] took the lead and showed

that a duct with a thin acoustically absorbent lining is an effective method that

can be utilized to reduce the unwanted noise inside a waveguide.

Koch [47] discussed the analytical solution of the problem of sound radiation from

the open end of a semi-infinite two-dimensional duct that is lined on inner side

walls with a locally reacting sound-absorbing material of finite length. The prob-

lem was tackled analytically with the assistance of the WH technique. The ac-

quired analytical outcomes were also discussed numerically for several parameters

involved.

Different physical models and theories are available in the literature to study the

mechanism of wave propagation. The envisaged boundary value problems are

governed usually by Helmholtz and Laplace type differential equations together

with rigid, soft, or impedance type boundary conditions. A range of such boundary

value problems has been addressed by using the WH technique.

Keller [48] depicted the mathematical hypothesis of diffraction in the high-frequency

limit that provides the complete sound field at any time in space as the sum of

all the scattered waves. He considered a wide range of issues that are canonical

to the diffraction hypothesis. Noble [49] explained the WH technique in detail

to demonstrate that this method is an amazing and adaptable apparatus. He
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gave analytical solutions to a variety of issues including the scattering of sound

waves from the edges or sharp discontinuities. Candel [50] explored the radiation

of acoustic modes from the end of a duct submerged in a consistently moving

medium by applying the WH technique. Brazier-Smith [51] addressed a complex

geometry comprising of two co-planar semi-infinite plates of different thicknesses

that are joined along one edge. He obtained solutions in various cases by ap-

plying the WH technique. Lining a duct with sound-absorbing material, mostly

porous, has been very common and often the most reliable engineering solution.

For chemical or other reasons, the use of a porous material is not desirable within

the exhaust gas, alternative sound-absorbing structures are used [52].

Huang and Choy [53] investigated the propagation of sound in a flexible duct

theoretically and experimentally. They performed the experiment on a duct with

a finite section of tense membrane and compared the propagating modes with the

relevant modes of the infinite membrane model.

Lawrie and Abraham [54] discussed the generalized orthogonal properties of the

boundary value problems involving higher-order boundary conditions. They ap-

plied the proposed scheme on prototype problems to explain acoustic scattering

in membrane-bounded ducts. Wang [55] analyzed a single-pass perforated absorb-

ing silencer by using a one-dimensional decoupling approach to account for the

acoustic characteristics of absorbing material.

Delany and Bazley [56] suggested empirical expressions for the characteristic

impedance and wave number for fibrous absorbing material as a function of fre-

quency and flow resistance. They also found that the flow resistance is determined

by fiber size and bulk density. The characteristic impedance and wave number es-

timated by the transfer matrix method agree with the empirical expressions of

Delany and Bazley. Recently, Peake and Abraham [57] presented the WH solution

for the radiation properties of a pair of semi-infinite, parallel-plate ducts in which

the inner duct is buried inside the outer duct.

The sudden changes in geometry and/or material properties greatly affect the

scattering energies. For example, the acoustic configuration including the porous
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coating of walls and/or the abrupt geometric changes in bounding surfaces are

useful to optimize the noise transmission. Likewise, the silencer cavities reduce

the noise produced by an auto exhaust system thanks to the cavity resonance

mechanism. In the situations wherein the physical problems contain geometric

discontinuities and/or more complex bounding properties, the use of the WH tech-

nique is inappropriate. Thus, a new technique is required that may handle more

complicated physical situations together with mathematical ease. Recently, the

MM approach has been adopted to solve more complex geometries with different

material properties. Warren et al. [58] applied the MM technique to analyze the

acoustic scattering from step-discontinuity in the membrane-bounded waveguides.

The main purpose of this research is by using a hybrid matching scheme to analyse

acoustics scattering in non-uniform and/or uniform trifurcated waveguides with

compressible fluid in the duct sections with various bounding wall conditions. The

modal field representation is formulated for the duct region with constant physical

and geometrical characteristics.

In this dissertation, the MM scheme is explored to solve a trifurcated waveguide

problem involving geometric discontinuities. The inside of the waveguide regions

contains compressible fluid with different bounding wall conditions. It is worth

mentioning that Hassan [59] and Hassan et al. [60, 61] applied the MM technique to

discuss the acoustic scattering in planar trifurcated and pentafurcated waveguides

containing compressible fluid in the absence of step-discontinuities.

1.1 Avant-garde

The current study illustrates the MM analysis of acoustic scattering and attenu-

ation through planar and flexible waveguides having different material properties

and structural discontinuities. The work is a continuation in the direction of pre-

vious studies [15, 16, 20, 21] and addresses the following problems.

1. Trifurcated waveguide scattering analysis with structural discontinuities.
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2. Study of generalized planar trifurcated lined duct involving structural dis-

continuities.

3. Scattering attributes of planar trifurcated waveguide structure with finite

discontinuities.

4. Analysis of scattering in a flexible trifurcated lined waveguide with step

discontinuities.

1.2 Dissertation Outline

The outlines of the dissertation are as follows:

Chapter 2 provides some fundamental concepts and preliminaries that are use-

ful for understanding the mathematical modeling of physical problems and the

solution schemes.

Chapter 3 presents the problem involving scattering analysis of a trifurcated

waveguide involving structural discontinuities. The bounding wall conditions are

assumed to be both soft/rigid and the MM solution is explained.

The study of generalized planar trifurcated lined duct involving structural discon-

tinuities is conducted in Chapter 4. We investigate the scattering characteristics

of a trifurcated lined duct in a general context. A semi-infinite duct is symmet-

rically situated inside an infinite acoustic lined duct having step-discontinuities

and generalized mixed boundaries. The scattered field potentials in each region

are computed using the MM approach. The influence of structural discontinuities,

duct size, and physical parameters on the energy of the scattered fields is stud-

ied. The currently available results for trifurcated waveguides can be recovered as

special cases.

The scattering properties of a planar trifurcated waveguide structure with several

discontinuities are studied in Chapter 5. The analysis of a planar trifurcated

lined waveguide backed by a line walled cavity with several step discontinuities
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is the subject of this chapter. On the x-axis, the duct arrangement is assumed

to be symmetric. The study of the behaviour of distributed fields in different

duct areas subject to different material properties of the walled duct is the key

emphasis. The governing problem is reduced to a Sturm-Lioullie (SL) eigenvalue

problem, which can be solved using the conventional mode-matching approach.

The scattering pattern is observed in perforated and fibrous materials, allowing

for the analysis of noise effects for various underlying structures. It’s worth noting

that, in practice, fundamental structures are directly related to silencer geometries.

In Chapter 6, we present the analysis of scattering in a flexible trifurcated lined

waveguide with step discontinuities. The inner walls of the chamber are coated

with an acoustically absorbent lining, while the other sides are left flexible. Edge

conditions are also applied to define the physical behaviour of elastic membranes at

finite edges. A semi-infinite duct is symmetrically placed within an infinite acoustic

lined duct with step-discontinuities and generalised mixed boundaries, which is

linked to an expansion chamber. The scattered field potentials in each region are

computed using the MM approach and the influence of pertinent parameters and

characteristics on the energy distribution within the waveguide are discussed.

Finally, a brief summary, concluding remarks, and directions for the future work

are presented in Chapter 7.



Chapter 2

Preliminaries

This chapter contains details of some fundamental concepts and preliminaries that

are useful in understanding the physical and mathematical context of the prob-

lems undertaken in this dissertation. Helmholtz’s equation governs the boundary

value problem problems, which involve rigid, soft, impedance, and/or membrane

types of boundary conditions. These boundary value problems are solved by us-

ing the mode-matching technique (MMT). This technique relies on the proper-

ties of propagating acoustic duct modes. Depending upon the formulation of the

physical problem, the eigen-sub-system may fall in Sturm-Liouville (SL) or non-

Sturm-Liouville (non-SL) category. Section 2.1 and Section 2.2 provide the de-

tails regarding governing equation and boundary conditions, respectively. Section

2.3 contains some details related to the mathematical formulation of the relevant

boundary value problems. To explain the mathematical modeling, the MM pro-

cedure, and relevant terminologies, a prototype bifurcated waveguide problem is

explained in Section 2.4.

2.1 Physical Context

In this dissertation, the propagation, reflection, transmission, and absorption of

acoustic waves in waveguides or channels are discussed. The propagation of acous-

tic waves in a medium is modeled in terms of a differential equation by using the

10
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principles of continuum mechanics. The acoustic phenomena are usually concerned

with the vibrations of small amplitudes in a compressible medium like air or water

and consequently linearized description of continuum equations is more appropri-

ate. Let us obtain the equations that govern the propagation of sound by using

the concept of conservation of mass, momentum, and energy on a fluid volume

element in the continuum.

The Equation of Continuity

The conservation of mass can be expressed mathematically as [64]

∂ρ

∂t
+∇. (ρu) = 0, (2.1)

where ρ represents the mass density of fluid volume element, u stands for the

velocity vector of fluid particle, and t denotes the time variable.

The Equation of Momentum

The conservation of momentum for inviscid fluids can be expressed as [64]

ρ

(
∂u

∂t
+ (u.∇) u

)
+∇p = 0, (2.2)

where p is the pressure of the fluid. When the fluid is at rest, these quantities have

the constant values, i.e ρ = ρo, u = 0 and p = po. If we are dealing with small

fluctuations in the fluid, then we can define the following approximations
ρ(r, t) = ρo + ρ

′
(r, t) + · · · ,

u(r, t) = u
′
(r, t) + · · · ,

p(r, t) = po + p
′
(r, t) + · · ·

(2.3)

For linear acoustic analysis we can neglect the higher order terms or products of

the fluctuations ρ
′
, u

′
and p

′
. On using the linear settings, Eqs. (2.1), (2.2) and
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(2.3) can be written as
∂ρ

′

∂t
+ ρo∇.u

′
= 0, (2.4)

and

ρo
∂u

′

∂t
+∇p′

= 0, (2.5)

respectively. Differentiating (2.4) with respect to t, taking divergence of (2.5), and

then comparing the resulting equations, we get

∂2ρ
′

∂t2
−∇2p

′
= 0. (2.6)

For barotropic fluid (In fluid dynamics, a barotropic fluid is a fluid whose density

is a function of pressure only) media (p = p(ρ)), the pressure fluctuations p
′

are

related to p as (see [62])

p
′
=
∂p

∂ρ
(ρo)ρ

′
. (2.7)

On using (2.7) to (2.6), the homogeneous wave equation is found to be

1

c2

∂2ρ
′

∂t2
−∇2ρ

′
= 0, (2.8)

or equivalently
1

c2

∂2p
′

∂t2
−∇2p

′
= 0, (2.9)

where

c =

√
∂p

∂ρ
(ρo), (2.10)

is the speed of sound. To determine the speed of sound, we consider equation of

state under adiabatic condition, which gives [62]

∂p

∂ρ
(ρo) =

γcpo
ρo

, (2.11)

where γc is the ratio of heat capacity.

On using (2.11) in (2.10), we get c =

√
γcpo
ρo

.

For air medium, on setting po = 1.01325 × 105Pa, ρo = 1.21kgm−3, γc = 1.402

and the speed of sound c = 343ms−1.
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It is useful to express the wave equation (2.9) in terms of field potential Φ(x, y, t)

which is related to the pressure fluctuations p
′

and velocity fluctuations u
′

by

p
′
= −ρ∂Φ

∂t
, (2.12)

and

u
′
= ∇Φ. (2.13)

On using (2.12) in (2.9), the linear wave equation in terms of field potential

Φ(x, y, t) can be written as

1

c2

∂2Φ

∂t2
−∇2Φ = 0, (2.14)

Throughout this dissertation, the harmonic time dependence e−iωt is assumed.

Thus, the two-dimensional time dependent field potential Φ(x, y, t) can be written

as

Φ(x, y, t) = ψ(x, y)e−iωt, (2.15)

where ω is the angular frequency and ψ(x, y) is the time independent field poten-

tial. On substituting (2.15) into (2.14), we obtain

(
∇2 + k2

)
ψ(x, y) = 0, (2.16)

where k = ω/c denotes the wave number.

2.2 Boundary Conditions

In acoustics, the reaction of the surface to the sound is important and can be

expressed in terms of boundary conditions. The nature and types of boundary

conditions depend on the physical conditions assumed while modeling the acoustic

problems. Boundary conditions can be classified in the following ways.
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2.2.1 Impedance Condition

The ratio of the acoustic pressure to the normal velocity is known as the acoustic

impedance of the surface [63, 65]. It is denoted by Z

Z =
Acoustic pressure

Normal velocity
. (2.17)

By substituting (2.12) and (2.13) into (2.17), we get

Z =
−ρ∂Φ

∂t
n̂ · ∇Φ

, (2.18)

or

ρ
∂Φ

∂t
+ Zn̂ · ∇Φ = 0,

or

ρZ−1∂Φ

∂t
+ n̂ · ∇Φ = 0,

or

βc−1∂Φ

∂t
+ n̂ · ∇Φ = 0, (2.19)

where n̂ is the unit normal vector directed in the surface.

β = ρcZ−1 denotes the dimensionless specific admittance of the surface.

On using the harmonic time dependence e−iωt, (2.19) becomes

− iβc−1ωψ + n̂ · ∇ψ = 0. (2.20)

The above condition is basically Robin or mixed type of boundary condition. It

is important to note that:

• For acoustically absorbent linings, the values of specific impedance

χ = β−1 = ξ + iη are as follows [11, 22]:

a) Fibrous sheet: ξ = 0.5, − 1.0 < η < 3.0.

b) Perforated sheet: 0 < ξ < 3.0, − 1.0 < η < 3.0.
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• When Z −→∞ in (2.20), then the given surface is acoustically rigid

n̂ · ∇ψ = 0, (2.21)

which is Neumann type of boundary condition.

• When Z −→ 0 in (2.20), then the given surface is acoustically soft

ψ = 0, (2.22)

which is Dirichlet type of boundary condition.

2.2.2 Elastic Membrane Condition

To formulate the elastic membrane condition it is assumed that the tensile stress is

same at every point on the membrane and at every orientation of the line element

perpendicular to the membrane surface. These membranes are flexible like a sheet

of rubber and have wave behaviour similar to that of waves on a string assemblage.

Therefore, the tensile stress of the membrane can be referred as tension (T ), and

the wave equation for membrane can be found in many text, for instance, see

[62, 65].

For membrane condition coupled with compressible fluid, the non-dimensional

displacement W (x, y, t) satisfies the equation of motion

∂2W

∂x2
− 1

c2
m

∂2W

∂t2
=

1

T
[p

′
]+−, (2.23)

where cm =
√
T/ρm defines the sound’s speed on membrane having mass density

ρm. The quantity [p
′
]+− = [p

′
]+− [p

′
]− on the right hand side of the (2.23) denotes

the fluid pressure difference across the membrane surface.

On using (2.12) in (2.23), we get

∂2W

∂x2
− 1

c2
m

∂2W

∂t2
=
−ρ
T

[
∂Φ

∂t

]+

−
. (2.24)
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Now using (2.15) in (2.24), we have

∂2W

∂x2
− 1

c2
m

∂2W

∂t2
=
iωρ

T

[
ψe−iωt

]+
− . (2.25)

Assuming the harmonic time dependence, it is convenient to express the membrane

displacement W by

W (x, t) = w(x)e−iωt. (2.26)

Using (2.26) in (2.25), we get

∂2w

∂x2
+
ω2

c2
m

w =
iωρ

T
[ψ]+− . (2.27)

As the membrane displacement W is related to field potential through the relation

∂W

∂t
=
∂Φ

∂y
. (2.28)

Use (2.26) and (2.15) in (2.28), which for harmonic time dependence reveals

w =
i

ω

∂ψ

∂y
. (2.29)

After substituting (2.29) in (2.27), we get

[
∂2

∂x2
+
ω2

c2
m

]
∂ψ

∂y
=
ω2ρ

T
[ψ]+− . (2.30)

Edge Conditions:

The role of edge conditions is fundamental in deciding the remarkable mathemati-

cal solution of the problem as well as to depict the type of physical connection. In

the case of elastic membrane, the edges or physical connections can be fixed, free

or spring-like etc. Following two types of edge conditions are used in this thesis.

Fixed Edges:

For the fixed edge, the displacement of the membrane is assumed to be zero, that

is
∂ψ(0, a)

∂y
= 0. (2.31)
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Free Edges:

In this case, the gradient is assumed to be zero, that is

∂2ψ(0, a)

∂xy
= 0. (2.32)

It is also named as simply supported edge condition.

2.3 Mathematical Formulation

The current thesis investigates acoustic propagation, scattering, and absorption

through a waveguide with compressible fluid inside and various wall conditions.

Physical issues including rigid, soft, impedance, and/or higher order boundary

conditions are governed by the Helmholtz equation. The dimensional form of

differential system is explained in the subsequent subsections.

2.3.1 Dimensional Setting

The dimensional form of Helmholt’z equation is

{
∂2

∂x2 +
∂2

∂y2 + k2

}
ψ (x, y) = 0, (2.33)

subject to the boundary conditions in the dimensional formulation

• Impedance Condition

Qψ + n · ∇ψ = 0, (2.34)

where Q = βc−1.

• Rigid Condition

n · ∇ψ = 0. (2.35)

• Soft Condition

ψ = 0. (2.36)
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• Membrane Condition

[
∂2

∂x2 +
ω2

c2
m

]
∂ψ

∂y
=
ω2ρ

T

[
ψ
]+
− . (2.37)

The overbars here and henceforth denote the dimensional setting of variables.

2.3.2 Non-dimensional Setting

We non-dimensionalize the governing differential system with the length scale k−1

and the time scale ω−1 under the transformations

x = kx̄, y = kȳ, t = ωt̄ and ψ̄(x̄, ȳ) =
1

k2
ψ(x, y), (2.38)

which imply
∂2

∂x̄2
= k2 ∂

2

∂x2
and

∂2

∂ȳ2
= k2 ∂

2

∂y2
. (2.39)

The dimensionless form of (2.33)-(2.37) is as follows:

• Helmholt’z Equation

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
ψ (x, y) = 0. (2.40)

• Impedance Condition

Qψ + n · ∇ψ = 0, (2.41)

where Q = −iβc−1ω.

• Rigid Condition

n · ∇ψ = 0. (2.42)

• Soft Condition

ψ = 0. (2.43)
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• Membrane Condition

{
∂2

∂x2
+ µ2

}
∂ψ

∂y
− α [ψ]+− = 0, (2.44)

where µ = c/cm and α = c2ρ/ (kT ) denote the membrane wave number and

fluid loading parameters, respectively.

2.3.3 Mode-matching Formulation

The problems considered in the thesis are analyzed with mode-matching technique.

Generally, there are two possible approaches to deal with modelling finite-length

dissipative silencers (mass reaction): the problem can be analyzed numerically,

which obviously involves the use of the finite element method or the boundary

element method; on the other hand, the problem can be solved analytically, which

commonly involves finding roots of the dispersion relationship and using an or-

thogonality relationship to equalize the pressure and sound velocity fields on the

inlet and outlet planes of the silencer. Taking a numerical approach, such as the

finite element method, it is possible to study a silencer of any shape or size. How-

ever, with increasing excitation frequency and silencer dimensions, the number of

degrees of freedom in the problem increases rapidly and, even for a relatively small

automobile muffler, the subsequent CPU overhead quickly becomes restrictive [31].

An analytical approach is apparently desirable rather than a numerical one, and

for automobile mufflers the mode matching approach has been shown to work well,

albeit only in the case of zero mean flow. However, the analytical coincidence of

the continuity conditions in the inlet/outlet planes of the silencer requires that

a sufficient number of roots have been found in the dispersion relationship to

achieve a convergent solution of the problem [32]. The technique is as follows; we

determine the eigenfunction expansion form of propagating modes by using the

separation of variable technique as given below

ψ(x, y) =
∞∑
n=0

AnYn(y)e±iTnx. (2.45)
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Here, Yn(y);n = 0, 1, 2 · · · are eigenfunctions and are found from the bounding

wall conditions, An are the mode amplitudes.

The associated eigenvalues linked with the mode wave numbers Tn;n = 0, 1, 2 · · ·

are the roots of some dispersion relation.

Depending upon the associated eigenvalue problem, the eigenfunction may be

orthogonal or non-orthogonal. The derivations of orthogonality relations (OR’s)

incorporated in this thesis can be explained as follows:

Orthogonality Relation with Impedance Boundary Conditions

Consider a wave propagating in a duct bounded by impedance boundary wall

conditions at y = a, b where −∞ < x <∞.

On using (2.45) in the governing equations (2.40)-(2.41), the eigenvalue problem

can be formulated as
∂2Yn(y)

∂y2
+ β2

nYn(y) = 0, (2.46)

Q1Yn(y)− ∂Yn(y)

∂y
= 0, at y = a, (2.47)

Q2Yn(y) +
∂Yn(y)

∂y
= 0, at y = b, (2.48)

where βn =
√

1− T2
n denotes the eigenvalues and Yn(y) are the eigenfunctions

that satisfy orthogonality conditions.

The appropriation OR can be derived using (2.46)-(2.48), and is explained as fol-

lows:

On multiplying Ym(y); m = 0, 1, 2, · · · with (2.46) and integrating over a ≤ y ≤ b,

we get

∫ b

a

Ym(y)
∂2Yn(y)

∂y2
dy + β2

n

∫ b

a

Ym(y)Yn(y)dy = 0. (2.49)

Applying integration by parts on first part of (2.49), we find

∫ b

a

Ym(y)
∂2Yn(y)

∂y2
dy =

[
Ym(y)

∂Yn(y)

∂y

]b
a

−
∫ b

a

∂Ym(y)

∂y

∂Yn(y)

∂y
dy. (2.50)
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Applying limits of integration, we get

∫ b

a

Ym(y)
∂2Yn(y)

∂y2
dy = Ym(b)

∂Yn
∂y

(b)− Ym(a)
∂Yn
∂y

(a)−
∫ b

a

∂Ym(y)

∂y

∂Yn(y)

∂y
dy.

(2.51)

Using (2.47) and (2.48) in (2.51), we find

∫ b

a

Ym(y)
∂2Yn(y)

∂y2
dy = −Ym(b)Yn(b)− Ym(a)Yn(a)−

∫ b

a

∂Ym(y)

∂y

∂Yn(y)

∂y
dy.

(2.52)

Use of (2.52) in (2.49) gives

− Ym(b)Yn(b)− Ym(a)Yn(a)−
∫ b

a

∂Ym(y)

∂y

∂Yn(y)

∂y
dy

+ β2
n

∫ b

a

Ym(y)Yn(y)dy = 0.

(2.53)

On interchanging the indices m and n of (2.53), we get

−Yn(b)Ym(b)− Yn(a)Ym(a)−
∫ b

a

∂Yn(y)

∂y

∂Ym(y)

∂y
dy

+ β2
m

∫ b

a

Yn(y)Ym(y)dy = 0.

(2.54)

On subtracting (2.54) from (2.53), we find

(
β2
n − β2

m

) ∫ b

a

Yn(y)Ym(y)dy = 0, (2.55)

which yields ∫ b

a

Ym(y)Yn(y)dy = Dnδmn, (2.56)

where

Dn =

∫ b

a

Y2
n(y)dy, (2.57)

and

δmn =

1, m = n,

0, m 6= n,

(2.58)

is the Kronecker delta. Note that the value of Dn is linked with the formulation
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of Yn that depends upon what conditions on the bounding walls are assumed.

Case-1:

With impedance walls, the value Yn is found by solving (2.46) subject to (2.47)-

(2.48) as

Yn(y) = sin[βn(y − a)] + βn cos[βn(y − a)], (2.59)

where βn are the roots of dispersion relation

(
Q1Q2 − β2

n

)
sin[βn(b− a)] + (1 +Q1) βn cos[βn(b− a)] = 0. (2.60)

These roots can be found numerically and serve as eigenvalues of the assumed

formulation. On using (2.59) in (2.57) we get

Dn =
1

4

{
2− 2 (a− b)

(
1 + β2

n

)
− 2 cos [2(−a+ b)βn]

+

(
− 1

βn
+ βn

)
sin [2(−a+ b)βn]

}
. (2.61)

• When Q1 −→ 0 and Q2 −→ 0, the eigenvalue problem (2.46)-(2.48) can be

formulated as

∂2Yn(y)

∂y2
+ β2

nYn(y) = 0, (2.62)

∂Yn(y)

∂y
= 0, at y = a, (2.63)

∂Yn(y)

∂y
= 0, at y = b. (2.64)

Case-2:

With rigid walls, on solving (2.62)-(2.64), the value of Yn is found to be

Yn(y) = cos[βn(y − a)], (2.65)

where

βn =
nπ

b− a
, n = 0, 1, 2 · · · (2.66)
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On using (2.65) in (2.57) we get

Dn =
b− a

2
. (2.67)

• When Q1 −→ ∞ and Q2 −→ ∞, (2.46)-(2.48) lead to the following eigen-

value problem

∂2Yn(y)

∂y2
+ β2

nYn(y) = 0, (2.68)

Yn(y) = 0, at y = a, (2.69)

Yn(y) = 0, at y = b. (2.70)

Case-3:

With soft walls, on solving (2.68)-(2.70), the value of Yn is found to be

Yn(y) = sin[βn(y − a)], (2.71)

where

βn =
nπ

b− a
, n = 1, 2, · · · (2.72)

On using (2.71), (2.57) yields

Dn =
b− a

2
. (2.73)

Orthogonality Condition with Rigid-membrane Boundary Condition

Consider a wave propagating in a duct bounded by rigid boundary wall condition

at y = a and membrane wall condition at y = b respectively, where −∞ < x <∞.

On using (2.45) in the governing equations (2.40) subject to the boundary condi-

tions (2.42) and (2.44), the eigenvalue problem can be formulated as

∂2Yn(y)

∂y2
− γ2

nYn(y) = 0, (2.74)

∂Yn(y)

∂y
= 0, at y = a, (2.75)
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(
γ2
n + 1− µ2

) ∂Yn(y)

∂y
− αYn(y) = 0, at y = b. (2.76)

where Yn(y);n = 0, 1, 2, · · · are the eigenfunctions having eigenvalues γn =
√
T2
n − 1.

The eigenfunctions Yn(y); n = 0, 1, 2, · · · satisfy orthogonality relation which is

different from the usual OR (2.56), and that can be referred as generalized orthog-

onality.

To develop generalized OR, we multiply (2.76) with
∂Ym
∂y

(b) to get

(
γ2
n + 1− µ2

) ∂Yn
∂y

(b)
∂Ym
∂y

(b)− αYn(b)
∂Ym
∂y

(b) = 0. (2.77)

On interchanging the indices m and n of (2.77), that yields

(
γ2
m + 1− µ2

) ∂Ym
∂y

(b)
∂Yn
∂y

(b)− αYm(b)
∂Yn
∂y

(b) = 0. (2.78)

Subtracting (2.78) from (2.77) leads to

(
γ2
n − γ2

m

) ∂Yn
∂y

(b)
∂Ym
∂y

(b)− α
[
Yn(b)

∂Ym
∂y

(b)− Ym(b)
∂Yn
∂y

(b)

]
= 0. (2.79)

Eq. (2.79) together with (2.75) gives

(
γ2
n − γ2

m

) ∂Yn
∂y

(b)
∂Ym
∂y

(b)− α
∫ b

a

[
Yn(y)

∂2Ym(y)

∂y2
− Ym(y)

∂2Yn(y)

∂y2

]
dy = 0.

(2.80)

Consequently, from (2.74) that finally yields

(
γ2
n − γ2

m

){∂Yn
∂y

(b)
∂Ym
∂y

(b) + α

∫ b

a

Yn(y)Ym(y)dy

}
= 0. (2.81)

The generalized orthogonality relation is as follows

α

∫ b

a

Yn(y)Ym(y)dy +
∂Yn
∂y

(b)
∂Ym
∂y

(b) = Fnδmn, (2.82)

where

Fn =

[
∂Yn
∂y

(b)

]2

+ α

∫ b

a

Y2
n(y)dy. (2.83)
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Interface Conditions:

The eigen expansion of propagating modes (2.45) involves unknown model coeffi-

cients that are determined by utilizing the matching interface conditions.

• At aperture interface of two duct regions, the pressures and normal compo-

nents of velocities are assumed continuous, that gives

p
′

left|Ω = p
′

right|Ω, (2.84)

u
′

left.n|Ω = u
′

right.n|Ω, (2.85)

where Ω denotes the aperture domain.

• At surface interface, the normal velocity is related through the surface

impedance Z, that gives

u
′
.n|Ω1 = ±Z−1p

′|Ω1 , (2.86)

where Ω1 is the domain of surface lying at interface.

Energy Flux:

The energy flux or power (P) provides the understanding about the physical aspect

of scattering as well as a check on the accuracy of performed algebra.

The formula to obtain energy flux through fluid medium is [44]

Pcfluid = Re

{
i

∫ b

a

ψ

(
∂ψ

∂x

)∗
dy

}
, (2.87)

where superposed asterisk (∗) specifies for complex conjugate. Accordingly, the

mathematical form of energy flux propagating via elastic membrane is given by

[44]

Pcmemb = Re

{
i

α

(
∂ψ

∂y

)(
∂2ψ

∂x∂y

)∗}
. (2.88)

Note that by using (2.87) and (2.88), we may construct a conserve power identity

based upon the law of conservation of energy and that may serve as a physical

check on the accuracy of truncated solution.
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2.4 Canonical Problem

A bifurcated boundary value problem is presented in this section. The main pur-

pose behind this section is to formulate a boundary value problem involving struc-

tural discontinuities for rigid-impedance (RI), rigid-rigid (RR) and rigid-soft (RS)

boundaries and obtain the solution by MM technique.

2.4.1 Mathematical Formulation

In this problem, we consider a two dimensional infinite bifurcated waveguide struc-

ture. This bifurcated waveguide is divided in three semi infinite duct regions

Rj, j = 1, 2, 3. The inside of the regions Rj, j = 1, 2, 3 are filled with compressible

fluid of density ρ and sound speed c.

The bounding wall conditions of the regions R1 and R2 are acoustically rigid while

R3 are impedance.

The outside of the waveguide is set in vacou. At x = 0, there lies two rigid vertical

step discontinuities aligned along with −b ≤ y ≤ −a and a ≤ y ≤ b.

The BVP is described in terms of field potential Φ
(
x, y, t

)
which satisfies the wave

equation
∂2Φ

∂x2 +
∂2Φ

∂y2 =
1

c2

∂2Φ

∂t
2 , (2.89)

where Φ
(
x, y, t

)
is dimensional and time-harmonic dependent field potential in

the waveguide which may be written in the form

Φ
(
x, y, t

)
= ψ (x, y) e−iωt, (2.90)

where, ψ (x, y) satisfies Helmholt’z equation as derived in many reference texts

like Crighton et al. (1992), that is

{
∂2

∂x2 +
∂2

∂y2 + k2

}
ψ (x, y) = 0. (2.91)

On non-dimensionalizing the boundary value problem with respect to the length

scale k−1 and the time scale ω−1 under the transformations x = kx, y = ky and
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t = ωt. An overbar has hitherto indicated a dimensional quantity and henceforth

its un-barred counterpart is non-dimensional.

y = -a

R1

R2

R3

y = 0

y = a

y = -b

y = b

Rigid 

x < 0

x > 0

        Rigid 

 Impedance

Impedance 

Rigid

Rigid

Figure 2.1: Geometry of the proposed model.

Thus, the non-dimensionalised field potential is given in terms of its dimensional

counterpart as

ψ (x, y) =
1

k2
ψ (x, y) , (2.92)

and the second order derivatives with respect to x and y are found to be

∂2

∂x2 = k2 ∂
2

∂x2
,

∂2

∂y2 = k2 ∂
2

∂y2
. (2.93)

Using (2.92) and (2.93) in (2.91), we get

{
∂2

∂x2
+

∂2

∂y2
+ 1

}
ψ (x, y) = 0. (2.94)

Consider an incident wave propagating in R1 from negative x-direction towards

x = 0.

At x = 0, it will scatter in infinite number of reflected and transmitted modes.

The physical configuration of the problem is shown in Figure 2.1.
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The non-dimensional field potentials that characterize the scattering fields in dif-

ferent duct regions may be written as:

ψ (x, y) =


ψ1 (x, y) , (x, y) ∈ R1,

ψ2 (x, y) , (x, y) ∈ R2,

ψ3 (x, y) , (x, y) ∈ R3.

(2.95)

In Rj; j = 1, 2, 3, the non-dimensional form of rigid boundary conditions are:

∂ψ1

∂y
= 0, y = 0, a, x < 0 , (2.96)

∂ψ2

∂y
= 0, y = −a, 0, x < 0, (2.97)

∂ψ3

∂x
= 0, x = 0, for − b ≤ y ≤ −a and a ≤ y ≤ b.

(2.98)

Here, (2.98) represents the rigid conditions for two vertical step discontinuities.

Similarly, the impedance type conditions for R3 are

pψ3 ± q
∂ψ3

∂y
= 0, y = ±b, x > 0. (2.99)

Moreover, the continuity conditions of the fluid pressures and normal velocities at

matching interface are

ψ2 = ψ3, x = 0, − a ≤ y ≤ 0, (2.100)

ψ1 = ψ3, x = 0, 0 ≤ y ≤ a, (2.101)

and

ψ3x =



0 x = 0, − b ≤ y < −a,

ψ2x x = 0, − a ≤ y ≤ 0,

ψ1x x = 0, 0 ≤ y ≤ a,

0 x = 0, a ≤ y < b.

(2.102)

The subscript x here denotes differentiation with respect to x.
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2.4.2 Eigenfunction Expansions

In this section, we use separation of variables to find the field potentials (ψ1, ψ2

and ψ3) of respective regions. The dimensionless field potential ψ1 can be writtten

as

ψ1 = ψinc + ψref . (2.103)

Consider the incident wave ψinc = eix and the reflected field ψref as an infinite

sum of reflected duct modes, written in the form

ψref =
∞∑
n=0

Anψ1n. (2.104)

We can determine ψ1n, n = 0, 1, 2, ... using separation of variables method.

In the usual manner ψ1n is written as

ψ1n(x, y) = X1(x)Y1(y). (2.105)

Using (2.105) in (2.94), we have

X
′′
1

X1

= −Y
′′

1

Y1

− 1 = −η2. (2.106)

Thus

X1(x) = a1e
iηx + b1e

−iηx, (2.107)

Y1(y) = c1 cos(τy) + d1 sin(τy), (2.108)

where a1 , b1 , c1 and d1 are arbitrary constants.

Since reflected waves propagate in the negative x−direction then a1 = 0 and since

all duct surfaces are rigid, d1 = 0 and τn =
nπ

a
.

It follows that

ψ1n(x, y) = Y1n(y)e−iηnx. (2.109)

The quantity ηn =
√

1− τ 2
n be the nth reflected mode wave number in which τn;

n = 0, 1, 2... are the eigenvalues and Y1n(y) = cos
(nπ
a
y
)

is the eigenfunction.
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Thus, ψ1 gets the form

ψ1(x, y) = eix +
∞∑
n=0

AnY1n(y)e−iηnx, (2.110)

where, An are the unknown amplitudes of eigenfunction expansion ψ1.

The quantity ηn is the reflected mode wave number in which τn; n = 0, 1, 2... are

the eigenvalues satisfying the dispersion relation

sin (τna) = 0, for n = 0, 1, 2... (2.111)

The corresponding eigenfunctions Y1n(y) satisfy the orthogonality relation

∫ a

0

Y1m(y)Y1n(y)dy =
a

2
δmnεm, (2.112)

where, δmn is Kronecker delta and εm = 2 for m = 0 and 1 otherwise.

Note that, the first term in (2.110) denotes the incident wave while the second

term represent the reflected field in which An, n = 0, 1, 2..., are the reflected mode

coefficients and are unknowns. These unknowns will be found later from matching

conditions. The field potential, ψ2 is made up of reflected waves and so in similar

manner

ψ2n(x, y) = X2(x)Y2(y). (2.113)

Using (2.113) in (2.94), we get

X
′′
2

X2

= −Y
′′

2

Y2

− 1 = −ξ2. (2.114)

After solving, we get

X2(x) = a2e
iξx + b2e

−iξx, (2.115)

Y2(y) = c2 cos(νy) + d2 sin(νy), (2.116)

where a2, b2, c2 and d2 are arbitrary constants.

Since reflected waves propagate in the negative x−direction therefore a2 = 0 and

as all duct surfaces are rigid, d2 = 0 and νn =
nπ

a
.
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It follows that

ψ2n(x, y) = Y2n(y)e−iξnx. (2.117)

The quantity ξn =
√

1− ν2
n is the reflected mode wave number in which νn;

n = 0, 1, 2... are the eigenvalues and Y2n(y) = cos
(nπ
a
y
)

is the eigenfunction.

Thus, the eigenfunction expansion ψ2 becomes

ψ2(x, y) =
∞∑
n=0

BnY2n(y)e−iξnx, (2.118)

where Bn are the unknown amplitudes of eigenfunction expansion ψ2 and the

eigenvalues νn; n = 0, 1, 2, · · · satisfy the dispersion relation

sin (ξna) = 0, for n = 0, 1, 2... (2.119)

The corresponding eigenfunctions Y2n(y), n = 0, 1, 2..., satisfy the orthogonality

relation ∫ 0

−a
Y2m(y)Y2n(y)dy =

a

2
δmnεm. (2.120)

Similarly, the field potential ψ3 is made up purely of transmitted waves and so

ψ3n(x, y) = X3(x)Y3(y). (2.121)

Using (2.121) in (2.94), we get

X
′′
3

X3

= −Y
′′

3

Y3

− 1 = −κ2. (2.122)

Thus, we have

X3(x) = a3e
iκx + b3e

−iκx, (2.123)

Y3(y) = c3 cos(λy) + d3 sin(λy), (2.124)

where, a3, b3, c3 and d3 are arbitrary constants. Since transmitted waves propagate

in the positive x−direction then b3 = 0 and as both surfaces have the impedance

type boundary conditions, it follows that
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ψ3n(x, y) = Y3n(y)eiκnx, (2.125)

where

Y3n(y) = p sin [λn(y + b)] + qλn cos [λn(y + b)] , (2.126)

and

κn =
√

1− λ2
n. (2.127)

Thus, ψ3 has the form

ψ3(x, y) =
∞∑
n=0

CnY3n(y)eiκnx, (2.128)

where Cn are the unknown amplitudes of eigenfunction expansion ψ3 and κn is the

wave number of the transmitted mode and λn; n = 0, 1, 2... are the eigenvalues.

Thus, these eigenvalues satisfy the dispersion relation

2pqλn cos (2λnb) +
(
p2 − q2λ2

n

)
sin (2λnb) = 0, for n = 0, 1, 2... (2.129)

The corresponding eigenfunctions Y3n(y); n = 0, 1, 2... are orthogonal and satisfy

the usual orthogonality relation

∫ b

−b
Y3m(y)Y3n(y)dy = Enδmn, (2.130)

where

En =
1

4

(
2pq − 2pq cos(4bλn) + 4b

(
p2 + q2λ2

n

)
+

(−p2 + q2λ2
n) sin(4bλn)

λn

)
.

(2.131)

2.4.3 Mode-matching Solution

The unknown coefficients {An, Bn, Cn}; n = 0, 1, 2, ... involved in eigenfunction

expansions ψ1, ψ2 and ψ3 are found by using the matching conditions (2.100)-

(2.102).
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On using (2.110) and (2.128) in (2.101), we get

1 +
∞∑
n=0

AnY1n(y) =
∞∑
n=0

CnY3n(y). (2.132)

On multiplying (2.132) with Y1m(y), integrating from 0 to a and then using the

orthogonality relation (2.112), we get

Am =
−2δm0

εm
+

2

aεm

∞∑
n=o

CnRmn, (2.133)

where

Rmn =

∫ a

0

Y1m(y)Y3n(y)dy. (2.134)

On using (2.111) and (2.128) in (2.100), we get

∞∑
n=0

BnY2n(y) =
∞∑
n=0

CnY3n(y). (2.135)

Multiplying (2.135) with Y2m(y), integrating from −a to 0 and then using the

orthogonality relation (2.120), we get

Bm =
2

aεm

∞∑
n=0

CnPmn, (2.136)

where

Pmn =

∫ 0

−a
Y2m(y)Y3n(y)dy. (2.137)

To determine the transmitted modes coefficients, we use (2.110), (2.118), and

(2.128) in (2.102) to obtain

∞∑
n=0

CnκnY3n(y) =



0, −b ≤ y < −a,

−
∞∑
n=0

BnυnY2n(y), −a ≤ y < 0,

1−
∞∑
n=0

AnηnY1n(y), 0 ≤ y < a,

0, a ≤ y ≤ b.

(2.138)
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On multiplying with Y3m(y), integrating from −b to b and then using the orthog-

onality relation (2.130), we get

Cm =
R0m

κmEm
− 1

κmEm

∞∑
n=0

AnηnRnm −
1

κmEm

∞∑
n=0

BnυnPnm. (2.139)

In this way (2.139) leads to a system of infinite equations in which Cm;m =

0, 1, 2, ..., are unknowns. These are truncated and inverted to determine the

unknown model coefficients. Once obtained Cm;m = 0, 1, 2, ..., the quantities

{Am, Bm}; m = 0, 1, 2, ... are found easily by using (2.133) and (2.136).

2.4.4 Energy Balance

In this section, we determine the expressions of energy flux in the inlet and outlet

duct regions of waveguide. As the boundaries of the waveguide are assumed rigid,

soft and impedance type so it is considered that no power will be lost and so the

law of conservation holds. Hence, it will be shown that incident power will be

equal to sum of the reflected and transmitted powers.

The energy flux/power inside the duct regions in terms of non-dimensional time

harmonic fluid velocity potential is defined by

∂E
∂t

=
1

2
Re

{
i

∫
Ω

ψ

(
∂ψ

∂x

)∗
dy

}
, (2.140)

where, superscript asterisk (*) denotes the complex conjugate.

From the definition of energy flux/power, the incident field takes the form of a

wave with unit amplitude and so, Pinc the power fed in the system per unit length

is given by

Pinc =
1

2
Re

{∫ a

0

ieix
(
−ie−ix

)
dy

}
=
a

2
. (2.141)

Likewise, the power/energy flux components in duct region Rj; j = 1, 2, 3 are:

P1 =
a

4
Re

{
∞∑
n=o

|An|2ηnεn

}
, (2.142)
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P2 =
a

4
Re

{
∞∑
n=o

|Bn|2υnεn

}
, (2.143)

and

P3 =
1

2
Re

{
∞∑
n=o

|Cn|2κnEn

}
. (2.144)

Now, it is important to note that the power fed in the system will be equal to the

sum of scattering powers in different duct regions, that is:

Pinc = P1 + P2 + P3, (2.145)

which is conserved power identity.

For analysis purpose, we may scale the incident power at unity.

For this, we divide (2.145) by
a

2
to get

ET =
3∑
j=1

Ej,

where,

Ej =
Pj
Pinc

j = 1, 2, 3

denote the power/energy flux components in duct regions Rj; j = 1, 2, 3 for which

the incident power is being scaled at unity.

2.4.5 Numerical Results and Discussions

This section provides graphical illustration of the scattered fields. For this pur-

pose, we truncate the system upto N terms and solve the infinite system given

by equations defined by (2.139) to compute unknown coefficients to be used in

eigenfunction expansion of respective field potentials. The truncated solution can

be used to check the accuracy of presented algebra and distribution of power or

energy flux.

The purpose of the graphical results herein, is to analyze the scattering of powers

or energies versus frequency (in hertz).



Preliminaries 36

The presented graphical figures are obtained for a fixed choice of rigid bound-

ary conditions of all walls of the duct sections R1 and R2, whilst upper and

lower boundaries of the outlet duct section R3 are varying with following types of

boundary conditions.

• Impedance Type:

For this type, the parameters are fixed as p = q = 1.

• Rigid Type:

For this type, the parameters are fixed as p = 0 and q = 1.

• Soft Type:

For this type, the parameters are fixed as p = 1 and q = 0.

Figures 2.2(a) and 2.2(b) are plotted to see the behavior of reflected power (E1)

against frequency regime (1Hz − 750Hz), with (a 6= b) and without step-

discontinuities (a = b) respectively.

It is noted that for Figure 2.2(a), the reflected energy goes to its minimum value

( for all impedance, rigid and soft cases ) at higher frequencies and fluctuation

in power reflection goes maximum in the presence of step-discontinuities. On the

other hand, Figure 2.2(b) depicts the reflected powers (E1) scattering results in the

absence of step-discontinuities by assuming the parameters a = b = 0.24m.

Tables 2.1 and 2.2 show a list of cut-on modes vs frequency for different duct

regions.

• Rigid-impedance Case:

It is noted that for RI case, seven duct modes are cut-on in the presence of

step-discontinuities at frequencies (61, 179, 299, 418, 537, 656, 716)Hz but in

planar case, four duct modes are cut-on at frequencies (179, 358, 537, 716)Hz.

• Rigid-rigid Case:

For RR case, seven duct modes are cut-on involving step-discontinuities at

frequencies (1, 120, 239, 358, 478, 597, 716)Hz but in planar case, four duct

modes are cut-on at frequencies (1, 358, 716)Hz.
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Figure 2.2: Reflected energy (E1) versus frequency (f) with RR conditions in
R1 and R2, and RI, RR and RS conditions in R3 (a) with step-discontinuous
(a 6= b) (b) without step-discontinuous (a = b), where a = 0.24m, b = 3a and

N = 10.

• Rigid-soft Case:

For RS case, seven duct modes are cut-on involving step-discontinuities at

frequencies (1, 120, 239, 358, 478, 597, 716)Hz while in planar case, four duct

modes are cut-on at frequencies (1, 358, 716)Hz.

These cut-on modes are obtained for RI, RR and RS type outer bounding walls. It

is noted that less fluctuations are observed for continuous case and cut-on modes

reduce in number (see Table 2.2).
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Table 2.1: Propagating modes of regions Rj , j = 1, 2, 3 · · · for discontinuous
waveguides

Cut-on frequency(Hz) No. of cut-ons in R1 No. of cut-ons in R2 No. of cut-ons in R3

RR RS RI

1 1 1 1 1 0

61 1 1 1 1 1

120 1 1 2 2 1

179 1 1 2 2 2

239 1 1 3 3 2

299 1 1 3 3 3

358 1 1 4 4 3

418 1 1 4 4 4

478 1 1 5 5 4

537 1 1 5 5 5

597 1 1 6 6 5

656 1 1 6 6 6

716 2 2 7 7 6

Table 2.2: Propagating modes of regions Rj , j = 1, 2, 3 · · · for planar waveg-
uides

Cut-on frequency(Hz) No. of cut-ons in R1 No. of cut-ons in R2 No. of cut-ons in R3

RR RS RI

1 1 1 1 1 0

179 1 1 1 1 1

358 1 1 2 2 1

537 1 1 2 2 2

716 2 2 3 3 2

More cut-on modes are observed for discontinuous waveguide indicates that more

energy is absorbed whereas, less amount of energy is absorbed when step of dis-

continuity is removed due to small number of cut-on modes (see Table 2.1 ).
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Figure 2.3: Reflected energy (E2) versus frequency (f) with RR conditions in
R1 and R2, and RI, RR and RS conditions in R3 (a) with step-discontinuous
(a 6= b) (b) without step-discontinuous (a = b), where a = 0.24m, b = 3a and

N = 10.

Figures 2.3(a) and 2.3(b) are plotted between reflected power (E2) versus frequency

f , with and without multiple step-discontinuities respectively. Two situations are

considered that,is; measure of reflected energy due to (a) step-discontinuities and

(b) without step-discontinuities. Again, a similar behavior in the reflected energy

is observed.

For discontinuous cases, there are more fluctuations in the reflected energy, which

gradually diminishes as the frequency increases. The reflected energy for all

impedances, rigid and soft cases, drops to zero at higher frequencies. Figure 2.3(b)
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shows a smooth behaviour when f < 361 is rigid and goes to its minimum value

for higher frequencies.
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Figure 2.4: Transmitted energy (E3) versus frequency (f) with RR conditions
in R1 and R2, and RI, RR and RS conditions in R3 (a) with step-discontinuous
(a 6= b) (b) without step-discontinuous (a = b), where a = 0.24m, b = 3a and

N = 10.

Figures 2.4(a) and 2.4(b) are plotted to observe the behavior of the transmitted

energy (E3) by varying the frequency by letting a = 0.24m and b = 3a. More fluctu-

ations in transmitted energy (for all impedance, rigid and soft cases) are noticed for

discontinuous case when compared results in the absence of step-discontinuities.

We see that the transmitted energy increases remarkably by increasing the fre-

quency regime. Further, in Figure 2.4(b), it is observed that at certain level of
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frequency in regime, say (1Hz − 180Hz), the curve pattern of the transmitted

energy (for all impedance, rigid and soft case) is quite smooth. It is also noticed

that the transmitted field coefficient is maximum at certain cut-on frequencies of

different regions.
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Figure 2.5: The real (a) and imaginary (b) parts of pressures against duct
heights, at interface, with step-discontinuities and rigid-impedance boundaries,

where, a = 0.24m, b = 3a and N = 80.

Figures 2.5 and 2.6 show that the real and imaginary parts of pressures and normal

velocities conditions exactly coincide in their respective regions. As a result, the

normal velocities and pressure matching conditions are entirely satisfied. It is

useful to reconstruct the matching conditions by using the truncated form of MM

solution.
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It confirms the accuracy of performed algebra and validates the truncated solution

as well.

-6 -4 -2 2 4 6
y

-2

-1

0

1

2

3

ÂIΨ jx M

Ψ3 x

Ψ2 x

Ψ1 x

(a)

-6 -4 -2 2 4 6
y

-2

0

2

4

äIΨ jx M

Ψ3 x

Ψ2 x

Ψ1 x

(b)

Figure 2.6: The real (a) and imaginary (b) parts of normal velocities against
duct heights, at interface, with step-discontinuities and RI boundaries, where,

a = 0.24m, b = 3a and N = 80.

Furthermore, the radiated energies Ei; i = 1, 2, 3, in different duct regions of the

bifurcated duct against the variation of frequency (f) are presented in tabular form

(2.1− 2.6). To collect the data of all of these tables, the dimensional variables are

fixed as: ā = 0.24m and b̄ = 3ā, for discontinuous case and ā = b̄ = 0.24m for

continuous case respectively.

A brief description of the power propagating in different duct regions, Rj; j =

1, 2, 3 for RI, RR and RS cases with discontinuous and continuous waveguide of
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the bifurcated duct is presented in tabular form (see Tables : 2.3−2.8 ) for different

frequencies. It is observed that the scattering components converge appropriately

whereas overall sum remains unity.

The RI case with discontinuous and planar waveguides of the bifurcated duct is

presented in Tables 2.3 and 2.4, respectively. The scattering energies converge

up to two and three decimal places, as can be observed. Moreover, the sum of

reflected energies (E1 and E2) and transmitted energy (E3) remains unity for

different values of f .

Table 2.3: Discontinuous bifurcated waveguide for RI case, when ā = 0.24m
and b̄ = 3ā by varying frequency

f E1 E2 E3 ET = 1

10 0.980163 0.0198368 0 1

100 0.393622 0.139772 0.466606 1

160 0.448309 0.109522 0.442169 1

220 0.350381 0.0551765 0.594442 1

310 0.156048 0.256548 0.587405 1

400 0.244699 0.193833 0.561468 1

550 0.0688701 0.0377801 0.89335 1

640 0.125583 0.0998704 0.774547 1

700 0.00934893 0.00614507 0.984506 1

745 0.0110413 0.0323672 0.956591 1

Likewise, the results for the reflected powers in inlet (E1 and E2) and the trans-

mitted power in outlet (E3) for RR case with discontinuous and planar waveguide

for different values of frequencies are shown in Table 2.5 and Table 2.6.
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Note that the sum of scattering energies for different values of f remain unity. It

clearly, authenticates the accuracy of algebra for both discontinuous (Table 2.5)

and planar (Table 2.6) configurations of the RR waveguide structure.

It essentially referred to the conservation of energies when no dissipation is in-

volved.

Similarly, Table 2.7 and Table 2.8 present the scattering analysis for different

values of frequencies that how power law of conservation hold for RS case with

discontinuous and continuous waveguide respectively.

It is shown that total energy remains conserved in both cases.

Table 2.4: Continuous bifurcated waveguide for RI case, when ā = b̄ = 0.24m
by varying frequency

f E1 E2 E3 ET = 1

10 0.962846 0.0371539 0 1

100 0.67269 0.32731 0 1

160 0.36999 0.63001 0 1

220 0.158805 0.404238 0.436957 1

310 0.225228 0.289083 0.485689 1

400 0.256406 0.249296 0.494298 1

550 0.126498 0.0863152 0.787186 1

640 0.0296258 0.0156923 0.954682 1

700 0.0151364 0.00771409 0.977149 1

745 0.0212139 0.034907 0.943879 1
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Table 2.5: Discontinuous bifurcated waveguide for RR case, when ā = 0.24m
and b̄ = 3ā by varying frequency

f E1 E2 E3 ET = 1

10 0.5626 0.0624869 0.374913 1

100 0.57464 0.0603541 0.365006 1

160 0.520582 0.0553577 0.42406 1

220 0.522984 0.179017 0.297999 1

310 0.251143 0.208358 0.540498 1

400 0.0662835 0.0203184 0.913398 1

550 0.123822 0.0983298 0.777849 1

640 0.0116479 0.00662039 0.981732 1

700 0.00967206 0.00535226 0.984976 1

745 0.0195783 0.0328495 0.947572 1

Table 2.6: Continuous bifurcated waveguide for RR case, when ā = b̄ = 0.24m
by varying frequency

f E1 E2 E3 ET = 1

10 0.2 0.25 0.5 1

100 0.2 0.25 0.5 1

160 0.2 0.25 0.5 1

220 0.2 0.25 0.5 1

310 0.2 0.25 0.5 1

400 0.0362895 0.0362895 0.927421 1

550 0.00458072 0.00458072 0.990839 1

640 0.00211769 0.00211769 0.995765 1

700 0.00137444 0.00137444 0.997251 1

745 0.0212272 0.0212272 0.957546 1
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Table 2.7: Discontinuous bifurcated waveguide for RS case, when ā = 0.24m
and b̄ = 3ā by varying frequency

f E1 E2 E3 ET = 1

10 0.998134 0.00186597 0 1

100 0.650637 0.349363 0 1

160 0.292124 0.211985 0.495891 1

220 0.363176 0.158174 0.47865 1

310 0.267136 0.0467276 0.686136 1

400 0.170069 0.166125 0.663806 1

550 0.0266363 0.0116339 0.96173 1

640 0.0469763 0.0298466 0.923177 1

700 0.0902981 0.071982 0.83772 1

745 0.0149262 0.034464 0.95061 1

Table 2.8: Continuous bifurcated waveguide for RS case, when ā = b̄ = 0.24m
by varying frequency

f E1 E2 E3 ET = 1

10 0.999902 0.0000976237 0 1

100 0.989676 0.0103239 0 1

160 0.970949 0.0290514 0 1

220 0.935796 0.0642042 0 1

310 0.800592 0.199408 0 1

400 0.284239 0.28834 0.427421 1

550 0.302974 0.206187 0.490839 1

640 0.298056 0.20618 0.495765 1

700 0.276693 0.226056 0.497251 1

745 0.100329 0.0988936 0.800777 1



Chapter 3

Trifurcated Waveguide Scattering

Analysis with Structural

Discontinuities

A trifurcated boundary value problem is presented in this chapter. This problem

comprises of waveguide whose boundary walls are considered to be either rigid or

soft in the presence of discontinuous waveguide structure. The purpose behind this

chapter is to formulate a boundary value problem with structural discontinuities

for RR and RS boundaries and obtain the solution by MM technique.

3.1 Mathematical Formulation

To formulate the boundary value problem, we consider an infinitely stretched

trifurcated waveguide occupying the regions

R1 := {x < 0,− a ≤ y ≤ a}, R2 := {x < 0, −b ≤ y ≤ −a},

R3 := {x < 0, a ≤ y ≤ b}, and R4 := {x > 0, −h ≤ y ≤ h},

where the dimensional setting of coordinates is shown by the over-bar.

47
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On the interior, these regions are filled with compressible fluid that has a density

of ρ and a sound speed of c. The bounding wall conditions of the region may vary;

(a) each of the region Rj, j = 1, 2, 3, 4 is bounded by acoustically rigid boundaries,

and

(b) the regions R2 and R3 comprise soft boundaries at y = ±b.

The outside of these waveguide is set into vacou. At x = 0, there lies two rigid

vertical step discontinuities aligned along with −h ≤ y ≤ −b and b ≤ y ≤ h.

Figure 3.1 depicts the physical layout of the problem as follows:

y = -a

ℛ1

ℛ2

ℛ4y = a

y = b

y = -b

y = -h

y = h

x < 0

x > 0

ℛ3

Figure 3.1: Geometry of the proposed model.

Consider an incident wave with time-harmonic dependence travelling in the di-

rection of R1 from negative x-direction to x = 0. It will scatter into an infinite

number of reflected and transmitted modes when x = 0. The dimensional field

potentials that characterize the scattering fields in different duct regions may be

written as:

ψ(x, y) =



ψ1(x, y), (x, y) ∈ R1,

ψ2(x, y), (x, y) ∈ R2,

ψ3(x, y), (x, y) ∈ R3,

ψ4(x, y), (x, y) ∈ R4.

(3.1)
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Now, we presume the harmonic time dependence of e−iωt in which ω = ck is the

angular frequency and k = 2πf/c is the wave number with frequency f .

Under the transformations

x = kx, y = ky and t = ωt,

the boundary value problem is non-dimensionalized with respect to the length

scale k−1 and the time scale ω−1.

Thus, the Helmholtz equation is satisfied by the dimensionless fluid velocity po-

tential ψ(x, y) (
∇2 + 1

)
ψ(x, y) = 0. (3.2)

In all of the above regions, the dimensionless form of rigid boundary conditions

are:
∂ψ1

∂y
= 0, y = ±a, x < 0, (3.3)

∂ψ2

∂y
= 0, y = −b,−a, x < 0, (3.4)

∂ψ3

∂y
= 0, y = a, b, x < 0, (3.5)

∂ψ4

∂y
= 0, y = ±h, x > 0, (3.6)

∂ψ4

∂x
= 0, x = 0, for − h ≤ y ≤ −b and b ≤ y ≤ h. (3.7)

Here, (3.7) represents the rigid conditions for two vertical step discontinuities.

However, the acoustically soft wall condition for R2 and R3 are

ψ2 = 0, y = −b, x < 0, (3.8)

ψ3 = 0, y = b, x < 0. (3.9)

Furthermore, the continuity conditions of pressure and velocity at the interface

are

ψ2 = ψ4, x = 0, − b ≤ y ≤ −a, (3.10)
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ψ1 = ψ4, x = 0, − a ≤ y ≤ a, (3.11)

ψ3 = ψ4, x = 0, a ≤ y ≤ b, (3.12)

and

ψ4x =



0 x = 0, − h ≤ y < −b,

ψ2x x = 0, − b ≤ y ≤ −a,

ψ1x x = 0, − a ≤ y ≤ a,

ψ3x x = 0, a ≤ y ≤ b,

0 x = 0, b ≤ y < h.

(3.13)

The subscript x here denotes differentiation with respect to x.

The MM technique is used to tackle the boundary value problem in the next

section.

3.2 Mode-matching Solution

To use the MM technique to solve the boundary value problem, firstly we determine

the eigenfunction expansions and orthogonality criteria in each duct section.

These can be found in various duct regions as

- Region R1 := {x < 0, −a ≤ y ≤ a}

In this region, (3.2) and (3.3) yields the eigen expansion form of field potential as:

ψ1(x, y) = eix +
∞∑
n=0

An cos[τn(y + a)]e−iηnx. (3.14)

The quantity ηn =
√

1− τ 2
n is the nth reflected mode wave number, where τn;

n = 0, 1, 2... are the eigenvalues, which fulfill the dispersion relation

sin[2τna] = 0, for n = 0, 1, 2... (3.15)
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The orthogonality relation is satisfied by the respective eigenfunctions

cos[τn(y + a)], n = 0, 1, 2...

∫ a

−a
cos[τm(y + a)] cos[τn(y + a)]dy = εmaδmn, (3.16)

where εm = 2 for m = 0 and 1 otherwise, and δmn is Kronecker delta.

The incident wave is represented by the first term in (3.14), while the reflected

field is given by the second term, in which An, n = 0, 1, 2... are the reflected mode

coefficients and are unknowns. These unknowns will be found later through the

use of matching conditions.

- Region R2 := {x < 0, −b ≤ y ≤ −a}

From (3.2), (3.4) and (3.8), the eigen expansion form is obtained as:

ψ2(x, y) =
∞∑
n=0

Bn cos[ξn(y + a)]e−iνnx, (3.17)

where νn =
√

1− ξ2
n is the nth reflected mode wave number, wherein ξn,

n = 0, 1, 2... are the eigenvalues.

These satisfy the dispersion relation for rigid boundary conditions at y = −b

sin[ξn(b− a)] = 0, for n = 0, 1, 2... (3.18)

However, for soft boundary condition at y = −b, these satisfy

cos[ξn(b− a)] = 0, for n = 0, 1, 2... (3.19)

The analogous eigenfunctions cos[ξn(y+ a)], n = 0, 1, 2... satisfy the orthogonality

relation

∫ −a
−b

cos[ξm(y + a)] cos[ξn(y + a)]dy =
Θ(ξn)(b− a)δmn

2
, (3.20)
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where

Θ(ξn) =


εn, for ξn =

nπ

b− a
: n = 0, 1, 2...

1, for ξn =
(2n+ 1)π

2(b− a)
: n = 0, 1, 2...

(3.21)

- Region R3 := {x < 0, a ≤ y ≤ b}

From (3.2), (3.5) and (3.9), the eigen expansion form is found to be as:

ψ3(x, y) =
∞∑
n=0

Cn cos[λn(y − a)]e−iκnx, (3.22)

where, κn =
√

1− λ2
n is the wave number of the nth reflected mode and λn;

n = 0, 1, 2... are the eigenvalues. For rigid surface at y = b, these eigenvalues

satisfy the dispersion relation

sin[λn(b− a)] = 0, for n = 0, 1, 2... (3.23)

whereas, for the soft surface at y = b these satisfy

cos[λn(b− a)] = 0, for n = 0, 1, 2.... (3.24)

The eigenfunctions cos[λn(y−a)]; n = 0, 1, 2... are orthogonal and assure the usual

orthogonality relation

∫ b

a

cos[λm(y − a)] cos[λn(y − a)]dy =
Θ(λn)(b− a)δmn

2
. (3.25)

- Region R4 := {x > 0, −h ≤ y ≤ h}

From (3.2) and (3.6), the eigen expansion form of transmitted field is revealed as:

ψ4(x, y) =
∞∑
n=0

Dn cos[γn(y + h)]eisnx, (3.26)
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where, sn =
√

1− γ2
n is the wave number of nth transmitted mode and γn;

n = 0, 1, 2... are the eigenvalues which fulfil the dispersion relation

sin[2γnh] = 0, for n = 0, 1, 2... (3.27)

The related eigenfunctions cos[γn(y + h)]; n = 0, 1, 2... satisfy the orthogonality

relation: ∫ h

−h
cos[γm(y + h)] cos[γn(y + h)]dy = hεm δmn. (3.28)

Now, the unknown coefficients {An, Bn, Cn, Dn} n = 0, 1, 2, ... are calculated by

applying the matching conditions (3.11)-(3.13).

On using (3.14) and (3.26) in (3.11), we get

1 +
∞∑
n=0

An cos[τn(y + a)] =
∞∑
n=0

Dn cos[γn(y + h)]. (3.29)

On multiplying (3.29) with cos[τm(y + a)], integrating from −a to a and then

applying the orthogonality relation (3.16), we found

Am = −δm0 +
1

aεm

∞∑
n=o

DnRmn, (3.30)

where

Rmn =


2aδmn n = 0,m = 0, 1, 2, . . .

γn
τ 2
m − γ2

n

Emn n 6= 0,m = 0, 1, 2, . . .
(3.31)

Emn = (−1)m+1 sin[(a+ h)γn]− sin[(a− h)γn]. (3.32)

On using (3.17) and (3.26) in (3.10), we get

∞∑
n=0

Bn cos[ξn(y + a)] =
∞∑
n=0

Dn cos[γn(y + h)]. (3.33)

On multiplying (3.33) with cos[ξm(y + a)], integrating the result from −b to −a
and afterwards using the OR (3.20), we get

Bm =
2

(b− a)Θ(ξm)

∞∑
n=0

DnPmn. (3.34)
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For all rigid-rigid cases:

Pmn =


δmn(b− a) n = 0,m = 0, 1, 2, . . .

γn
m2π2

(b− a)2
− γ2

n

Fmn n 6= 0,m = 0, 1, 2, . . . (3.35)

where

Fmn = (−1)m+1 sin[(h− a)γn] + sin[(h− b)γn]. (3.36)

For all rigid-soft cases:

Pmn =


2(b− a)

π
n = 0,m = 0, 1, 2, . . .

1

(2m+ 1)2π2

4(b− a)2
− γ2

n

Gmn n 6= 0,m = 0, 1, 2, . . . (3.37)

where

Gmn = (−1)m+1γn sin[(h− a)γn] +
(2m+ 1)π

2(b− a)
cos[(h− b)γn]. (3.38)

On using (3.22) and (3.26) into (3.12), we get

∞∑
n=0

Cn cos[λn(y − a)] =
∞∑
n=0

Dn cos[γn(y + h)]. (3.39)

On multiplying (3.39) with cos[λm(y − a)], integrating the result from a to b and

afterwards imposing the orthogonality relation (3.25), we get

Cm =
2

(b− a)Θ(λm)

∞∑
n=0

DnQmn. (3.40)

For all rigid-rigid cases:

Qmn =


δmn(b− a) n = 0,m = 0, 1, 2, . . .

γn
m2π2

(b− a)2
− γ2

n

Hmn n 6= 0,m = 0, 1, 2, . . . (3.41)
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where

Hmn = (−1)m+1 sin[(b+ h)γn] + sin[(a+ h)γn]. (3.42)

For all rigid-soft cases:

Qmn =


2(b− a)

π
n = 0,m = 0, 1, 2, . . .

1

(2m+ 1)2π2

4(b− a)2
− γ2

n

Imn n 6= 0,m = 0, 1, 2, . . . (3.43)

where

Imn = (−1)m+1 (2m+ 1)π

2(b− a)
cos[(b+ h)γn] + γn sin[(a+ h)γn]. (3.44)

Now, to determine the transmitted modes coefficients, we use (3.17), (3.14), (3.22)

and (3.26) into (3.13) to obtain

∞∑
n=0

Dnsn cos[γn(y+h)] =



0, −h ≤ y < −b,

−
∞∑
n=0

Bnυn cos[ξn(y + a)], −b ≤ y < −a,

1−
∞∑
n=0

Anηn cos[τn(y + a)], −a ≤ y < a,

−
∞∑
n=0

Cnκn cos[λn(y − a)], a ≤ y < b,

0, b ≤ y ≤ h.

(3.45)

After multiplying with cos[γm(y + h)], integrating from −h to h, and lastly using

the orthogonality relation (3.45), we get

Dm =
R0m

smεmh
− 1

smεmh

∞∑
n=0

AnηnRnm −
1

smεmh

∞∑
n=0

BnυnPnm

− 1

smεmh

∞∑
n=0

CnκnQnm. (3.46)
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Now, by means of (3.30), (3.34) and (3.40), it is straightforward to obtain (3.46)

in terms of unknown Dm,m = 0, 1, 2, ..., that is:

Dmsmεmh+
∞∑
n=0

∞∑
p=0

DpηnRnpRnm

εna

+
∞∑
n=0

∞∑
q=0

2DqυnPnqPnm
(b− a)Θ(ξn)

+
∞∑
n=0

∞∑
l=0

2DlκnQnmQnl

(b− a)Θ(λm)
= 2R0m. (3.47)

In this manner, (3.47) leads to a set of infinite equations in which the unknown are

Dm;m = 0, 1, 2, ... To find the unknown modal coefficients, these are truncated

and inverted. Once obtained Dm;m = 0, 1, 2, ..., the quantities {Am, Bm, Cm};

m = 0, 1, 2, ... are found easily by using (3.30), (3.34) and (3.40).

3.3 Energy Balance

The energy flux/power inside the duct regions in terms of dimensionless time

harmonic fluid velocity potential is defined by

∂E
∂t

=
1

2
Re

{
i

∫
Ω

ψ

(
∂ψ

∂x

)∗
dy

}
, (3.48)

where, superscript asterisk (*) denotes the complex conjugate. From the definition

of energy flux/power,the incident power is found to be Pinc = a. Likewise, the

power/energy flux components in duct region Rj; j = 1, 2, 3, 4 are:

P1 =
1

2
Re

{
∞∑
n=o

|An|2ηnεn

}
, (3.49)

P2 =
b− a

4a
Re

{
∞∑
n=o

|Bn|2υnΘ(ξn)

}
, (3.50)

P3 =
b− a

4a
Re

{
∞∑
n=o

|Cn|2κnΘ(λn)

}
, (3.51)

and

P4 =
h

2a
Re

{
∞∑
n=o

|Dn|2snεn

}
. (3.52)
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It’s significant to mention that the generated power into the system equals the

sum of scattering powers in different duct regions, that is:

Pinc = P1 + P2 + P3 + P4, (3.53)

which is conserved power identity. We can scale the incident power to unity for

analysis purposes. For this, we divide (3.53) by a to get

ET =
4∑
j=1

Ej,

where

Ej = Pj/a; j = 1, 2, 3, 4,

denote the power/energy flux components in duct regions Rj; j = 1, 2, 3, 4 for

which the incident power is being scaled at unity.

3.4 Numerical Results and Discussions

To discuss the radiated energy flux/power in duct regions and to reconstruct the

matching conditions at interface, we truncate the system of equations defined by

(3.47) up to N terms and then solve the retained system numerically.

Here, two types of bounding wall conditions for various duct sections Rj,

j = 1, 2, 3,4 are assumed:

(a) all are acoustically rigid (Figures 3.2− 3.5(a)),

(b) rigid-soft for R2 and R3 only (Figures 3.2− 3.5(b)).

For numerical computations the compressible fluid of density (air) ρ = 1.2043kgm−3

sound speed c = 343ms−1 are taken from Kaye and Laby [68].

The radiated power in different duct regions against frequency from 1Hz to 3000Hz

is shown in Figure 3.2.
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The considered configuration comprises structural discontinuities at interface and

fixed dimensions: a = 0.05m, b = 0.1m and h = 0.15m.

Note that, the radiated energy against frequency depicted in Figure 3.2 contains

sharp edges and the variation in radiated energy is more noticeable before and

after these edges. These edges basically specify the cut-on position of duct modes.

For the structural discontinuities case along with rigid bounding characteristics

(Figure 3.2(a)), the two duct modes are cut-on at f = 1441Hz and f = 2281Hz.

However for the rigid-soft case (Figure 3.2(b)), three modes are cut-on at f =

1441Hz, f = 1711Hz and f = 2281Hz. The more manifest radiated energy is of

region R1 and R4.
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Figure 3.2: The energy flux/power components against frequency in discontin-
uous waveguide, with (a) rigid-rigid (b) rigid-soft boundaries, where, a = 0.05m,

b = 0.1m, h = 0.15m and N = 10.
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For rigid case (Figure 3.2(a)), by increasing frequency, the energy flux in R4 de-

creases, and which goes to its maximum at cut-on limit of the next duct mode.

But once the next, and so on higher modes start propagating, this power varies

inversely to its highest and, vice versa for energy flux in R1.

However, in later rigid-soft case (Figure 3.2(b)), this behavior is opposite upto the

first cut-on point, while remains similar to previous case for higher order modes.

In the next Figure 3.3, we assume the planar waveguide configuration (without

structural discontinuity) by taking a = 0.05m and b = h = 0.1m.

Note that, only the first duct mode is cut-on at f = 1711Hz in given regime for

both rigid (Figure 3.3(a)) and rigid-soft (Figure 3.3(b)) bounding properties.
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Figure 3.3: The energy flux/power components against frequency in planer
waveguide, with (a) rigid-rigid (b) rigid-soft boundaries, where, a = 0.05m,

b = 0.1m, h = 0.15m and N = 10.
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In rigid case, the radiated power in different duct regions remain constant against

frequency upto their first cut-on and then goes to its largest (see Figure 3.3(a)).

But in the rigid-soft case, the energy radiated in regions R1 and R4 varies inversely.

Figure 3.4 depicts the effect of symmetric height discontinuity on radiated energy.

For the fixed frequency f = 1000Hz and dimensions a = 0.05m, b = 0.1m,

the dimensionless height discontinuity h = k × h is changed symmetrically from

h = b to h = 0.2m.

The first duct mode is cut-on at k × h ≈ 3.11, while the other cut-on modes are

beyond the chosen domain.
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Figure 3.4: The energy flux/power components against height discontinuities
h, for (a) rigid-rigid (b) rigid-soft boundaries, where, a = 0.05m, b = 0.1m and

N = 10.
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From Figure 3.4, it is noted that the variation in height discontinuity significantly

affects the reflection in R1 and transmission in R4, for both rigid case and rigid-

soft case. There is no radiated power in R2 and R3 for rigid-soft setting, which is

consistent with the transmission loss in these regions.
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Figure 3.5: The energy flux/power components against b, for (a) rigid-rigid
(b) rigid-soft boundaries, where, a = 0.05m, h = b and N = 10

Figure 3.5 shows the radiated energy in the planar waveguide against the size of

the regions R2, R3 and R4. In symmetrical setting, the vertical dimensions of the

regions containing incident wave is fixed at a = 0.05m and b = h.

Now, on changing the non-dimensional height b = k × b, for 0.1m ≤ b ≤ 0.15m,

the size of regions R2, R3 and R4 is changed while frequency remain fixed at

f = 1000Hz. The cut-on duct mode for the rigid case occurs at k × b ≈ 3.13m

(see Figure 3.5(a)) whilst for the rigid-soft case two cut-on duct modes exist at
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k × b ≈ 2.18m and k × b ≈ 3.13m (see Figure 3.5(b)). From Figure 3.5, it is

clear that the change in size of the duct regions significantly affect the radiated

energy of these regions. By comparing all these four graphs, it is obvious that

geometric discontinuity and change of material properties have a significant impact

on the radiated energy duct modes, which are more noticeable in low frequency

regime 5Hz-1200Hz. Moreover, from the geometric symmetry assumed in problems

about y = 0, the region R2 becomes symmetric to R3. Therefore, the reflected

power R2 as depicted in Figures 3.2 − 3.5, overlaps to the power reflected in R3.

Nevertheless, this might reduced the algebra, if we consider it to two layered

duct comprising only of regions R1 and R3 but as we have studied the trifurcated

waveguide problem, so it is necessary to use R2 region as well with R1 and R3.

Now, the continuity conditions of normal velocity and pressure are pieced together

at interface to validate the truncated solution.
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Figure 3.6: The real (a) and imaginary (b) parts of pressures against duct
heights, at interface, with step-discontinuities and rigid-rigid boundaries, where,

a = 0.05m, b = 0.1m, h = 0.15m and N = 80.
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Only the results for all rigid setting of waveguide along with height discontinuities

are shown in Figures 3.6 and 3.7. The vertical dimensions of symmetric waveguide,

are fixed at a = 0.05m, b = 0.1m and h = 0.15m. At frequency f = 1000Hz the

real (<) and imaginary (=) parts of non-dimensional pressure and normal velocity

are depicted in Figures 3.6 and 3.7.

It can be seen that the real and imaginary parts of pressures ψj(0, y), j = 1, 2, 3

in their respective region match exactly to the pressure ψ4(0, y), −b < y < b.
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Figure 3.7: The real (a) and imaginary (b) parts of normal velocities against
duct heights, at interface, with step-discontinuities and rigid-rigid boundaries,

where, a = 0.05m, b = 0.1m, h = 0.15m and N = 80.

Likewise, the real and imaginary parts of normal velocities ψjx(0, y), j = 1, 2, 3 in

their respective regions match exactly to the normal velocity ψ4x(0, y), −b < y < b.
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However, the real and imaginary parts of ψ4x(0, y) approach to zero in the regime

−h < y < −b and b < y < h, which is exactly the condition considered in (3.13).
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Figure 3.8: The scattering energies plotted against number of terms N for
discontinuous structure where a = 0.05m, b = 0.1m, h = 0.15m and f = 530Hz.

The point-wise variation of energies versus number of terms N are shown in Figure

3.8, which obviously fulfill the conserve energy identity.

In this way, the truncated solution reconstruct successfully the matching conditions

of pressures and velocities at interface i.e, (3.11)-(3.13). However, there appear

some oscillations in normal velocity curves which lessen on increasing the number

of modes.

One more physical check on accuracy of the truncated solution is the validation

of conserved power identity ET = 1 while the inside of the waveguide contains

compressible fluid. It holds even a few number of duct modes are allowed to

propagate in their respective regions (see dotted line in Figures 3.2, 3.3, 3.4 and

3.5).



Chapter 4

Study of Generalized Planar

Trifurcated Lined Duct Involving

Structural Discontinuities

The underlying chapter investigates the scattering characteristics of a trifurcated

lined duct involving structural discontinuities. A semi-infinite duct is located

symmetrically within an infinite acoustic lined duct with step-discontinuities and

generalised mixed boundaries. The scattered field potentials in each region are

computed using mode-matching approach. Whereas the obtained energy functions

of scattered fields are plotted with and without structural discontinuities and by

varying the size of duct against different physical parameters. The existing results

of trifurcated waveguide theory are recovered as a special case presenting thereby

few additional results.

4.1 Mathematical Formulation

The physical problem under discussion is the diffraction of a fundamental incident

mode propagating in the positive x-direction out of the end of a semi-infinite

rigid duct. The dimensional scalar potential Φ
(
x, y, t

)
, which relates the acoustic

65
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pressure and normal velocity inside the waveguide as:

p = −ρ∂Φ

∂t
and v = 5Φ,

respectively, is introduced to define the boundary value problem. The quantity

ρ here denotes the density of undisturbed compressible fluid. The time-harmonic

dependence of e−iωt, where ω = ck is the angular frequency with wave number

k and speed of sound c, is suppressed throughout. Thus, the time independent,

dimensional fluid velocity potential ψ(x, y) fulfils the Helmholtz equation as well

as the general boundary conditions

αn.5v ± βv = 0. (4.1)

Here α, β are some arbitrary constants chosen to assume the soft, rigid, or mixed

type boundary conditions. The quantity n represents the normal vector directed

into the acoustic impedance of the lining represented by Z = p/(v.n). It should

be noted that the quantities in the overbars represent the dimensional setting of

coordinates.

As shown in Figure 4.1, an incident wave with time-harmonic dependency is con-

sidered travelling in the direction of R1 from negative x-direction to x = 0. It

will scatter into an infinite number of reflected and transmitted modes if x = 0 is

chosen.

Under the transformations x = kx, y = ky and t = ωt, the governing boundary

value problem can be dimensionless in relation to length scale k−1 and time scale

ω−1. The non-dimensional boundary value problem contains Helmholtz’s equation

and boundary conditions is modelled below:

(
∇2 + 1

)
ψj(x, y) = 0; j = 1, 2, 3, 4, −∞ < x <∞, (4.2)

∂ψj
∂y

= 0, y = ±a, −∞ < x < 0 , j = 1, 2, 3, (4.3)

pψ2 − q
∂ψ2

∂y
= 0, y = −b, −∞ < x < 0, (4.4)
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Figure 4.1: The geometry of the problem

pψ3 + q
∂ψ3

∂y
= 0, y = b, −∞ < x < 0, (4.5)

rψ4 ± s
∂ψ4

∂y
= 0, y = ±h, 0 < x <∞, (4.6)

and

µψ4 + κ
∂ψ4

∂x
= 0, x = 0, for − h ≤ y ≤ −b and b ≤ y ≤ h, (4.7)

where ψj, j = 1− 4 denote the dimensionless field potential in Rj; j = 1− 4.

4.2 Mode-matching Solution

In this section, the underlined boundary value problem is solved using an MM

approach. The MM procedure is based on matching pressure and normal velocity

modes across interface regions. Thus, we first determine the propagating and

scattering modes in various duct sections. That is

- Region R1 := {x < 0, −a ≤ y ≤ a}

The eigen expansion form of field potential is given by equations (4.2) and (4.3)



Study of Generalized Planar Trifurcated Lined Duct Involving Structural
Discontinuities 68

in this region as:

ψ1(x, y) = eix +
∞∑
n=0

An cos[τn(y + a)]e−iϑnx. (4.8)

The reflected mode wave number is ϑn =
√

1− τ 2
n, where τn are the eigenvalues

satisfying the following dispersion relation

sin [2τna] = 0, for n = 0, 1, 2 · · · (4.9)

The incident wave is represented by the first term in equation (4.8), while the

reflected field is represented by the second term, in which An, are the amplitudes of

unknown reflected mode. When matching conditions are applied, these unknowns

will be determined. Further, the corresponding eigenfunctions cos[τn(y+ a)], fulfil

the following OR

∫ a

−a
cos[τm(y + a)] cos[τn(y + a)]dy = εmaδmn, (4.10)

where εm = 2 for m = 0 and 1 otherwise, and δmn is Kronecker delta.

- Regions R2 := {x < 0, −b ≤ y ≤ −a} and R3 := {x < 0, a ≤ y ≤ b}

From equations (4.2)-(4.5), the eigen expansions of field potential in regions R2

and R3 are:

ψ2(x, y) =
∞∑
n=0

Bn cos[λn(y + a)]e−iκnx, (4.11)

and

ψ3(x, y) =
∞∑
n=0

Cn cos[λn(y − a)]e−iκnx, (4.12)

respectively. Here, κn =
√

1− λ2
n be the wave number of nth reflected mode and

λn; are the eigenvalues.

For Robin type (mixed) boundary conditions at y = ±b, these eigenvalues address

the required dispersion relation

p cos[λn(b− a)]− qλn sin[λn(b− a)] = 0. (4.13)
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The respective eigenfunctions cos[λn(y+a)] and cos[λn(y−a)] are orthogonal and

fulfil the following OR’s:

∫ −a
−b

cos[λm(y+a)] cos[λn(y+a)]dy =

∫ b

a

cos[λm(y−a)] cos[λn(y−a)]dy = Fnδmn,

(4.14)

where

Fn =
2(b− a)λn + sin[2(b− a)λn]

4λn
. (4.15)

- Region R4 := {x > 0, −h ≤ y ≤ h}

From equations (4.2) and (4.6), the eigen expansion form of transmitted field is

revealed as

ψ4(x, y) =
∞∑
n=0

DnYne
iςnx, (4.16)

where ςn =
√

1− γ2
n is the nth wave number of transmitted mode and γn are the

eigen values, which satisfies the dispersion relation as follows:

(
r2 − s2γ2

n

)
sin (2γnh) + 2rsγn cos (2γnh) = 0, for n = 0, 1, 2... (4.17)

Whereas, the respective eigenfunction Yn; satisfy the following OR’s

∫ h

−h
YmYndy = Gnδmn, (4.18)

where

Yn = r sin[γn(y + h)] + sγn cos[γn(y + h)], (4.19)

and

Gn =
1

4γn

{
2γn(rs+ 2h(r2 + s2γ2

n)− rs cos (4hγn)) + (−r2 + s2γ2
n) sin (4hγn)

}
.

(4.20)

The unknown coefficients {An, Bn, Cn, Dn;n = 0, 1, 2, ...} are determined by using

the matching conditions.

Thus, the continuity condition of the fluid pressure at matching interface is

ψ1 (0, y) = ψ4 (0, y) , − a ≤ y ≤ a. (4.21)
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On using equations (4.8) and (4.16) into (4.21), we get

1 +
∞∑
n=0

An cos[τn(y + a)] =
∞∑
n=0

DnYn. (4.22)

Multiplying equation (4.22) with cos[τm(y+ a)], integrating the result from −a to

a and then applying the OR (4.10), we have

Am =
−2δm0

εm
+

1

aεm

∞∑
n=o

DnRmn, (4.23)

where

Rmn =
γn

τ 2
m − γ2

n

{
(−1)mH+

n −H−n
}
, (4.24)

and

H±n = r cos[γn(h± a)]− sγn sin[γn(h± a)]. (4.25)

The continuity condition of the fluid pressure at matching interface is

ψ2 (0, y) = ψ4 (0, y) , − b ≤ y ≤ −a. (4.26)

On using equations (4.11) and (4.16) into (4.26), we get

∞∑
n=0

Bn cos[λn(y + a)] =
∞∑
n=0

DnYn. (4.27)

By multiplying equation (4.27) with cos[λm(y+a)], integration the result from −b

to −a and applying the OR (4.14), it is found that

Bm =
1

Fm

∞∑
n=o

DnPmn, (4.28)

where

Pmn =
1

γ2
n − λ2

m

{γnJn + γn cos[λm(b− a)]Kn − λm sin[λm(b− a)]Ln} , (4.29)

and

Jn = −r cos[γn(h− a)] + sγn sin[γn(h− a)], (4.30)
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Kn = r cos[γn(h− b)]− sγn sin[γn(h− b)], (4.31)

Ln = r sin[γn(h− b)] + sγn cos[γn(h− b)]. (4.32)

The continuity condition of the fluid pressure at matching interface is

ψ3 (0, y) = ψ4 (0, y) , a ≤ y ≤ b. (4.33)

On using equations (4.12) and (4.16) into (4.33), we get

∞∑
n=0

Cn cos[λn(y − a)] =
∞∑
n=0

DnYn. (4.34)

On multiplying equation (4.34) with cos[λm(y − a)], integrating the result from a

to b and employing the orthogonality relation (4.14), we get

Cm =
1

Fm

∞∑
n=o

DnQmn, (4.35)

where

Qmn =
1

γ2
n − λ2

m

{γnMn + γn cos[λm(b− a)]Nn − λm sin[λm(b− a)]Tn} , (4.36)

and

Mn = r cos[γn(h+ a)]− sγn sin[γn(h+ a)], (4.37)

Nn = −r cos[γn(h+ b)] + sγn sin[γn(h+ b)], (4.38)

Tn = r sin[γn(h+ b)] + sγn cos[γn(h+ b)]. (4.39)

We now use the matching condition for normal velocities at the interface to get

the unknown coefficient for region R4

ψ4x (0, y) =



−µ
κ
ψ4 (0, y) , − h ≤ y ≤ −b,

ψ2x (0, y) , − b ≤ y ≤ −a,

ψ1x (0, y) , − a ≤ y ≤ a,

ψ3x (0, y) , a ≤ y ≤ b,
−µ
κ
ψ4 (0, y) , b ≤ y ≤ h.

(4.40)
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Therefore, using equations (4.8), (4.11), (4.12) and (4.16) into (4.40) we obtain

∞∑
n=0

DnςnYn =



−iµ
κ

∞∑
n=0

DnYn, − h ≤ y ≤ −b,

−
∞∑
n=0

Bnκn cos[λn(y + a)], −b ≤ y < −a,

1−
∞∑
n=0

Anϑn cos[τn(y + a)], −a ≤ y < a,

−
∞∑
n=0

Cnκn cos[λn(y − a)], a ≤ y < b,

−iµ
κ

∞∑
n=0

DnYn, b ≤ y ≤ h,

(4.41)

which on multiplying with Ym integrating from −h to h and applying the OR

(4.18) yields

Dm =
R0m

ςmGm

− 1

ςmGm

∞∑
n=0

AnϑnRnm −
1

ςmGm

∞∑
n=0

BnκnPnm

− 1

ςmGm

∞∑
n=0

CnκnQnm +
iµ

κςmGm

∞∑
n=0

Dn (Smn +Hmn) , (4.42)

where

Smn =

∫ h

b

YmYndy and Hmn =

∫ −b
−h

YmYndy.

Equation (4.42) initiate an infinite system of equations with unknowns

Dm;m = 0, 1, 2, ....

These are inverted and reduced to find the unknown model coefficients. The

quantities {An, Bn, Cn}; n = 0, 1, 2, ... may be simply calculated after getting the

values of Dm using equations (4.23), (4.28) and (4.35). It is important to note that

by changing µ = 0 in equation (4.42), the vertical discontinuities became rigid.

4.3 Energy Balance

This section provides a graphical behavior of radiated energy in different duct

regions along with reconstruction of matching conditions at interface. In prior

to this, the system of equations given by equation (4.42) is truncated and solved

numerically. In terms of dimensionless time-harmonic velocity potential of fluid,
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the energy flux/power inside the duct regions is defined by

∂E
∂t

=
1

2
Re

{
i

∫
Ω

ψ

(
∂ψ

∂x

)∗
dy

}
, (4.43)

where superscript asterisk (*) denotes the complex conjugate. From the definition

of energy flux/power, the incident power is found to be Pinc = a. Likewise, the

energy flux/power components in all four duct regions are:

P1 =
1

2
Re

{
∞∑
n=o

|An|2ϑnεn

}
, (4.44)

P2 =
1

2a
Re

{
∞∑
n=o

|Bn|2κnFn

}
, (4.45)

P3 =
1

2a
Re

{
∞∑
n=o

|Cn|2κnFn

}
, (4.46)

and

P4 =
1

2a
Re

{
∞∑
n=o

|Dn|2ςnGn

}
. (4.47)

It is important to note that the power fed into the system equals the sum of

scattering powers in different duct regions, that is:

Pinc = P1 + P2 + P3 + P4, (4.48)

which is known as conserved power identity. For analysis purpose, we may scale

the incident power at unity, which is obtained by dividing equation (4.48) by a

that is

1 = E1 + E2 + E3 + E4, (4.49)

where

ET =
4∑
j=1

Ej,

and

Ej = Pj/a, j = 1, 2, 3, 4.

Note that Ej, j = 1, 2, 3, 4 denote the power/energy flux components in duct

sections Rj; j = 1, 2, 3, 4 for which the power incident is scaled to be one.
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4.4 Numerical Results and Discussions

The underlying discussion is mainly focused in three ways while considering the

waveguide structure with and without step-discontinuities.

In first part, the reflected energy is visualized for different material properties of

outer bounding ducts.

In second part, the reflected energy is plotted by considering specific impedance

for a fibrous sheet.

The results obtained in this part are compared with existing results [9] as a special

case.

Whereas, the energy distribution in all regions of trifurcated ducts is analyzed in

the third part. It is worth mentioning that the energy distribution in all cases is

plotted against frequency regime and height of the ducts.

Part-I:

Figures 4.2 and 4.3 are plotted to see the reflected power behavior against fre-

quency regime (1Hz − 750Hz) with and without step-discontinuities.

In Figure 4.2, the duct regions (R2 − R4) are considered to be more wider than

in case of Figure 4.3.

It is noted that in Figure 4.2(a), six duct modes are cut-on at frequencies

(88, 178, 322, 463, 607, 715)Hz while in Figure 4.2(b), four duct modes are cut-on

at frequencies (88, 298, 535, 715)Hz and in Figure 4.3(a), two duct modes are cut-

on at frequencies (358, 715)Hz while in Figure 4.3(b), three duct modes are cut-on

at frequencies (355, 595, 715)Hz.

In Figures 4.2 and 4.3 for soft and impedance boundary conditions, it is noted

that all the energy seems to be reflected.

This indicates that no energy is transferred into the region R4 at lower frequencies

but for higher frequencies the real values of wave numbers are increased which

indicates that sound is attenuated. More reflection predicts less transmission.
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Figure 4.2: Reflected energy in region R1(E1) versus frequency (f) for Hard,
Soft and Impedance outer bounding walls (a) with step-discontinuous (b 6= h)
(b) without step-discontinuous (b = h) where a = 0.24m, b = 3a and N = 10.

These cut-on modes are obtained for impedance outer bounding walls (for brevity).

It is observed that more number of cut-on modes appeared in case of impedance

walls with step-discontinuities.

However, the cut-on modes are reduced considerably when step-discontinuities are

removed. The occurrence of these cut-on modes is responsible to attenuate the

sound propagating through transmitted region.
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Figure 4.3: Reflected energy in region R1(E1) versus frequency (f) for Hard,
Soft and Impedance outer bounding walls (a) with step-discontinuous (b 6= h)

(b) without step-discontinuous (b = h) where a = 0.24m, b =
3a

2
and N = 10.

Albeit, the consideration of lined duct provided more attenuation in the trans-

mitted region when it is compared with hard or soft ducts. Figure 4.3 depicts

that number of cut-on modes becomes lesser when the duct regions (R2−R4) are

reduced considerably which ultimately resulted a lesser attenuation. Figures 4.4

and 4.5 are plotted to observe the behavior of the reflected energy by varying the

height of the inner duct by letting b = 3a and b =
3a

2
, respectively. Two situations
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are considered that,is; measure of reflected energy due to a) step-discontinuities

and b) without step-discontinuities. Again, a similar behavior in the reflected

energy is observed.
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Figure 4.4: Reflected energy in region R1(E1) versus k × a for Hard, Soft
and Impedance outer bounding walls (a) with step-discontinuous (b 6= h) (b)

without step-discontinuous (b = h) where, f = 230Hz, b = 3a and N = 10.

It is noted that in Figure 4.4(a), six duct modes are cut-on at k×a ≈ 0.387052m,

0.782517m, 0.875073m, 1.41358m, 1.91002m, 2.03623m while in Figure 4.4(b), three

duct modes are cut-on at k×a ≈ 0.387052m, 1.3042m, 1.9605m and the first cuts-

on duct mode occurs at k×a ≈ 1.57345m and k×a ≈ 1.56503m for Figures 4.5(a)
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and 4.5(b) respectively, while the other cut-on modes are beyond the chosen do-

main. These cut-on modes are obtained for impedance outer bounding walls (for

brevity).
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Figure 4.5: Reflected energy in region R1(E1) versus k × a for Hard, Soft
and Impedance outer bounding walls (a) with step-discontinuous (b 6= h) (b)

without step-discontinuous (b = h) where, f = 230Hz, b =
3a

2
and N = 10.

As long as height of the inner duct becomes wider, the reflected energy reduces

more rapidly. There is sharp variation in the graphs when b = 3a as compared

when b =
3a

2
where a smooth and consistent behavior of reflected energy is ob-

served (see Figure 4.5). We see that in Figures 4.2− 4.5, the outer boundaries of
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inlet and outlet regions are bounded by planar boundary conditions.
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Figure 4.6: The reflected flux/power components against frequency con-
taining compressible fluid in (a) discontinuous (b) continuous waveguides for

a = 0.24m, b = 3a, ξ = 0.5, p = r = 1, q = s = iζ and N = 10.

It is expected that due to soft and impedance boundaries conditions, the reflected

power is almost maximum whereas transmitted power is minimum at lower fre-

quencies and height of duct respectively.

Part-II:

In this part, we are interested to observe the reflected energy by considering the
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parametric setting as used by Rawlins [9].
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Figure 4.7: The reflected flux/power components against k × a containing
compressible fluid in (a) discontinuous (b) continuous waveguides for f =

230Hz, b = 3a, ξ = 0.5, p = r = 1, q = s = iζ and N = 10.

The following values for the specific impedance (ζ = ξ+ iη) which is fibrous sheet,

are used : ξ = 0.5, −1.0 < η < 3.0. Keeping in mind that impedance parame-

ters used in this article are related with [9] as p = 1, q =
iζ

k
. Figures 4.6(a) and

4.7(a) are plotted in the presence of step-discontinuities (b 6= h) against frequency

regime and height of the duct respectively. Whereas, Figures 4.6(b) and 4.7(b)
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are plotted in the absence of step-discontinuities (b = h) which indeed resembled

closely with the study of Rawlins [9].
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Figure 4.8: The radiated energy flux/power components against frequency
containing compressible fluid in discontinuous waveguide for (a) b = 3a (b)

b =
3a

2
, a = 0.24m, p = q = r = s = 1 and N = 10.

The cut-on modes occurred at (178, 214, 355, 715)Hz and (178, 355, 715)Hz for

Figures 4.6(a) and 4.6(b) while, cut-on modes occurred at k × a ≈ 0.782517m,

0.942386m, 1.56503m and k × a ≈ 0.782517m, 1.56503m for Figures 4.7(a) and

4.7(b) respectively. These cut-on modes are obtained for ζ = 0 (for brevity).



Study of Generalized Planar Trifurcated Lined Duct Involving Structural
Discontinuities 82

From present analysis, it is seen that the results of Rawlins [9] are closely related

to our study.
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Figure 4.9: The radiated energy flux/power components against k × a con-

taining compressible fluid in discontinuous waveguide for (a) b = 3a (b) b =
3a

2
,

a = 0.24m, p = q = r = s = 1 and N = 10.

We presented a qualitative comparison with Rawlins but with different values of

parameters. We have used the MM technique for the same waveguide and Figure

4.7(b) is in close tie with the results obtained by Rawlins [9] using WH-Technique.

It is clearly observed that more cut-on modes are propagating in the presence of

step-discontinuities when compared results in the absence of step-discontinuities.
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This altogether justifies the MM solution which is computed in the presence of step-

discontinuities. Besides, the reflected energy reduces considerably by increasing

the frequency regime and height of the duct. Further, in case of no fibrous sheet,

the curve pattern is quite smooth and very few modes are cut-on. However, the

increasing value of η, increases the number of cut-on modes.
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Figure 4.10: The real (a) and imaginary (b) parts of pressure at interface for
a = 0.24m, b = 3a, h = 5a, µ = κ = 1 and N = 120.

Part-III:

The energy distribution in different duct regions against frequency (f) and varia-

tion in symmetric height discontinuity a = k × a is shown in Figures 4.8 and 4.9
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respectively. Here, the distribution of energy is plotted only in the presence of

step-discontinuities. Number of cut-on modes occur which show that more energy

is absorbed.
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Figure 4.11: The real (a) and imaginary (b) parts of normal velocity at inter-
face for a = 0.24m, b = 3a, h = 5a, µ = κ = 1 and N = 120.

In Figure 4.8(a), eight duct modes are cut-on at frequencies (40, 133, 166, 328, 391,

457, 523, 715)Hz while in Figure 4.8(b), four duct modes are cut-on at frequen-

cies (82, 277, 391, 709)Hz when inner duct region R1 is condensed. Figures 4.9(a)
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and 4.9(b) are sketched for energy distribution in different duct regions by vary-

ing the height of the duct. It is noted that seven cut-on modes occur at k × a

(0.168283m, 0.588991m, 0.723618m, 1.16115m, 1.43882m, 1.71649m, 2.00257m) and

three cut-on modes occur at k× a (0.370223m, 1.22847m, 1.71649m), respectively.

It is observed that after certain level of frequency, most of the energy is transmitted

through region R4. In addition, the number of cut-on modes reduce to very few

values when inner duct region is shortened (b =
3a

2
). Though, a sharp inversion

in the energy distribution is observed yet, overall energy remains conserved.

To validate the truncated solution, the conditions of pressure and normal veloci-

ties are sketched at the interface. Figures 4.10 and 4.11 shows that the real and

imaginary parts of pressures and normal velocities conditions exactly coincide in

their respective regions. As a result, the normal velocities and pressure match-

ing conditions are entirely satisfied. The point-wise variation of radiated energies

verses N are shown Figure 4.12, which clearly satisfy the conserve energy identity

(4.49).

0 10 20 30 40 50
N

0.2

0.4

0.6

0.8

1.0

E j

ET

E4

E3

E2

E1

(a)

Figure 4.12: The scattering energies plotted against number of terms N for
discontinuous structure where a = 0.24m, b = 3a, h = 5a and f = 530Hz.



Chapter 5

Scattering Attributes of Planar

Trifurcated Waveguide Structure

with Finite Discontinuities

The scattering attributes of a planar trifurcated waveguide structure with numer-

ous discontinuities are examined in this chapter. This physical problem is shaped

to demonstrate the scattering behaviour of acoustic waves in a planar waveguide

with structural discontinuities. After interacting with the discontinuities and edges

of the underlying structure, the fluid-structure coupled waveforms scatter. The

MM technique is used in accordance to calculate fluid velocity potentials. By vary-

ing the dimensions of the expansion chamber and the wave frequency, the guiding

structure is then analysed and validated using scattering energy or power func-

tional. The results are formulated and analysed using the matching conditions,

expansion chamber dimension, and wave frequencies, validating the obtained so-

lutions.

This chapter is structured as follows: The boundary value problem for the duct

modes, as well as the appropriate orthogonality relations, are illustrated in Sec-

tion. 5.1. These are used in Section. 5.2, where the MM technique is used to solve

the boundary value problem. Energy balance is achieved is Section. 5.3. Numerical

results and discussions are provided in Section. 5.4.

86



Scattering Attributes of Planar Trifurcated Waveguide Structure with Finite
Discontinuities 87

5.1 Mathematical Formulation

Consider a trifurcated waveguide which comprises an expansion chamber occu-

pying the duct regions: Rj; j = 1, 2, ..., 7. Inside the regions Rj; j = 1, 2, ..., 7

is indeed a fluid with ρ as density and c as sound speed. The bounding wall

conditions of the regions may vary:

(a) Each of the regionsRj; j = 1, 6 are bounded by acoustically rigid boundaries.

(b) The regions Rj; j = 2, 3, 4, 5, 7 comprise the rigid, soft as well as impedance

boundaries.

The outside of the waveguide is set into vacou. At x = ±L, there lies two vertical

step discontinuities aligned along with −h ≤ y ≤ −b and b ≤ y ≤ h.

y = -a

ℛ1

ℛ2

ℛ4

y = a

y = b

y = -b

y = -h

x < 0
x > 0

ℛ3

y = h y = h

y = b

y = a

y = -a

y = -b

y = -h

ℛ5

ℛ6

ℛ7

Figure 5.1: The geometry of the problem

An incident wave of time-harmonic dependence is propagating inR1 from negative

x-direction towards x = 0 as shown in Figure 5.1. At x = 0, it will scatter into

the infinite number of reflected and transmitted modes. For convenience, we non-

dimensionalize the governing boundary value problem according to length scale
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k−1 and time scale ω−1 with transformations

x = kx y = ky and t = ωt.

The dimensionless boundary value problem contains Helmholtz’s equation and

boundary conditions is modeled below:

(
∇2 + 1

)
ψj(x, y) = 0; j = 1, 2, ..., 7, −∞ < x <∞, (5.1)

∂ψj
∂y

= 0, y = ±a, −∞ < x < −L , j = 1, 2, 3, (5.2)

∂ψj
∂y

= 0, y = ±a, L < x <∞ , j = 5, 6, 7, (5.3)

pψj ± q
∂ψj
∂y

= 0, y = ±b, −∞ < x < −L , j = 3, 2, (5.4)

pψj ± q
∂ψj
∂y

= 0, y = ±b, L < x <∞, , j = 5, 7, (5.5)

rψ4 ± s
∂ψ4

∂y
= 0, y = ±h, − L < x < L, (5.6)

µψ4 ± κ
∂ψ4

∂x
= 0, x = ∓L, for − h ≤ y ≤ −b and b ≤ y ≤ h, (5.7)

where, ψj, j = 1, 2, ..., 7, denote the non-dimensional field potentials in various

regions Rj : j = 1, 2, ..., 7.

Here, p, q, r, s, µ and κ appearing in equations (5.4),(5.5), (5.6) and (5.7) are any

arbitrary constants. We can change their values from 0 to 1 to acquire one of the

rigid, soft, or impedance/mixed type boundary conditions.

5.2 Mode-matching Solution

This section includes a MM solution to the underlined boundary value problem.

The mode-matching technique relies on the matching of normal velocity and pres-

sure modes across the interface regions.

Thus, we first determine the propagating and scattering modes inside the regions

Rj : j = 1, 2, ..., 7. That is:
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- Region R1 := {x < −L, −a ≤ y ≤ a}

In this region, equations (5.1) and (5.2) gives the eigen expansion form of field

potential as:

ψ1(x, y) = ei(x+L) +
∞∑
n=0

An cos[τn(y + a)]e−iϑn(x+L). (5.8)

The quantity ϑn =
√

1− τ 2
n, is the nth reflected mode wave number, where τn, be

the eigenvalues satisfying the following dispersion relation

sin (2τna) = 0, for n = 0, 1, 2... (5.9)

It is noted that the incident wave is given by the first term in equation (5.8),

while the reflected field is represented by the second term, nevertheless An, are

the reflected mode coefficients and are unknowns.

The unknowns will be determined later when matching conditions are applied.

Further, the corresponding eigenfunctions cos[τn(y + a)], n = 0, 1, 2... fulfil the

concerning orthogonality relation

∫ a

−a
cos[τm(y + a)] cos[τn(y + a)]dy = εmaδmn, (5.10)

where εm = 2 for m = 0 and 1 otherwise, and δmn is Kronecker delta.

- Region R6 := {x > L, −a ≤ y ≤ a}

By using equations (5.1) and (5.3), the eigen expansions form of field potential in

transmitted region R6 is:

ψ6(x, y) =
∞∑
n=0

Tn cos[τn(y + a)]eiϑn(x−L). (5.11)

- Regions R2 := {x < −L, −b ≤ y ≤ −a} and R3 := {x < −L, a ≤ y ≤ b}

From equations (5.1)-(5.5), the eigen expansions of field potential in regions R2

and R3 are;

ψ2(x, y) =
∞∑
n=0

Bn cos[λn(y + a)]e−iκn(x+L), (5.12)
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and

ψ3(x, y) =
∞∑
n=0

Cn cos[λn(y − a)]e−iκn(x+L), (5.13)

respectively.

Here, κn =
√

1− λ2
n be the wave number of nth reflected mode and λn; n = 0, 1, 2...

are the eigenvalues.

- Regions R5 := {x > L, a ≤ y ≤ b} and R7 := {x > L, −b ≤ y ≤ −a}

The eigen expansions form of field potential in transmitted regions R5 and R7 are

ψ5(x, y) =
∞∑
n=0

Kn cos[λn(y − a)]eiκn(x−L), (5.14)

and

ψ7(x, y) =
∞∑
n=0

Mn cos[λn(y + a)]eiκn(x−L). (5.15)

For Robin type (mixed) boundary conditions at y = ±b, these eigenvalues fulfil

the following dispersion relation

p cos[λn(b− a)]− qλn sin[λn(b− a)] = 0. (5.16)

The corresponding eigenfunctions cos[λn(y+a)] and cos[λn(y−a)], are orthogonal

and deals with the usual orthogonality relations as follows:

∫ −a
−b

cos[λm(y+a)] cos[λn(y+a)]dy =

∫ b

a

cos[λm(y−a)] cos[λn(y−a)]dy = Fnδmn,

(5.17)

where

Fn =
2(b− a)λn + sin[2(b− a)λn]

4λn
. (5.18)

- Region R4 := {−L < x < L, −h ≤ y ≤ h}

From equations (5.1) and (5.6), ψ4(x, y) is revealed as

ψ4(x, y) =
∞∑
n=0

D+
n Yne

−iςnx +
∞∑
n=0

D−n Yne
iςnx, (5.19)



Scattering Attributes of Planar Trifurcated Waveguide Structure with Finite
Discontinuities 91

where, ςn =
√

1− γ2
n, is the wave number of nth mode and γn are the eigenvalues

and that satisfy the dispersion relation as

(
r2 − s2γ2

n

)
sin[2γnh] + 2rsγn cos[2γnh] = 0, for n = 0, 1, 2... (5.20)

Whereas, the eigenfunction Yn satisfy the following orthogonality relation

∫ h

−h
YmYndy = Gnδmn, (5.21)

where

Yn = r sin[γn(y + h)] + sγn cos[γn(y + h)], (5.22)

and

Gn =
1

4γn

{
2γn(rs+ 2c(r2 + s2γ2

n)− rs cos[4cγn]) + (−r2 + s2γ2
n) sin[4cγn]

}
.

(5.23)

The unknown coefficients {Am, Bm, Cm, D
+
m, D

−
m, Tm,Mm, Km;m = 0, 1, 2, ...} are

found by using the matching conditions. Thus, the continuity condition of the

fluid pressure at matching interface is

ψ1 (−L, y) = ψ4 (−L, y) , − a ≤ y ≤ a. (5.24)

On using equations (5.8) and (5.19) in (5.24), we get

1 +
∞∑
n=0

An cos[τn(y + a)] =
∞∑
n=0

D+
n Yne

iςnL +
∞∑
n=0

D−n Yne
−iςnL. (5.25)

The multiplying of equation (5.25) with cos[τm(y + a)] and integrating the result

from −a to a and after that employing the given orthogonality relation (5.10), we

have

Am =
−2δm0

εm
+

1

aεm

(
∞∑
n=0

D+
nRmne

iςnL +
∞∑
n=0

D−nRmne
−iςnL

)
, (5.26)

where

Rmn =
γn

τ 2
m − γ2

n

{
(−1)mH+

n −H−n
}
, (5.27)



Scattering Attributes of Planar Trifurcated Waveguide Structure with Finite
Discontinuities 92

and

H±n = r cos[γn(h± a)]− sγn sin[γn(h± a)]. (5.28)

The continuity condition of the fluid pressure at matching interface is

ψ2 (−L, y) = ψ4 (−L, y) , − b ≤ y ≤ −a. (5.29)

On using equations (5.12) and (5.19) in (5.29), we get

∞∑
n=0

Bn cos[λn(y + a)] =
∞∑
n=0

D+
n Yne

iςnL +
∞∑
n=0

D−n Yne
−iςnL. (5.30)

Again, multiplying equation (5.30) with cos[λm(y + a)], integration it from −b to

−a and after that applying the orthogonality relation (5.17), it is observed that

Bm =
1

Fm

(
∞∑
n=0

D+
n Pmne

iςnL +
∞∑
n=0

D−n Pmne
−iςnL

)
, (5.31)

where

Pmn =
1

γ2
n − λ2

m

{γnJn + γn cos[λm(b− a)]In − λm sin[λm(b− a)]Wn} , (5.32)

and

Jn = −r cos[γn(h− a)] + sγn sin[γn(h− a)], (5.33)

In = r cos[γn(h− b)]− sγn sin[γn(h− b)], (5.34)

Wn = r sin[γn(h− b)] + sγn cos[γn(h− b)]. (5.35)

The continuity condition of the fluid pressure at matching interface is

ψ3 (−L, y) = ψ4 (−L, y) , a ≤ y ≤ b. (5.36)

Using equations (5.13) and (5.19) in (5.36), we get

∞∑
n=0

Cn cos[λn(y − a)] =
∞∑
n=0

D+
n Yne

iςnL +
∞∑
n=0

D−n Yne
−iςnL. (5.37)
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On multiplying equation (5.37) with cos[λm(y − a)], integrating the result from a

to b and employing the orthogonality relation (5.17), we obtain

Cm =
1

Fm

(
∞∑
n=0

D+
nQmne

iςnL +
∞∑
n=0

D−nQmne
−iςnL

)
, (5.38)

where

Qmn =
1

γ2
n − λ2

m

{γnUn + γn cos[λm(b− a)]Nn − λm sin[λm(b− a)]Vn} , (5.39)

and

Un = r cos[γn(h+ a)]− sγn sin[γn(h+ a)], (5.40)

Nn = −r cos[γn(h+ b)] + sγn sin[γn(h+ b)], (5.41)

Vn = r sin[γn(h+ b)] + sγn cos[γn(h+ b)]. (5.42)

In order to determine the unknown coefficients for duct region R4 at x = −L,

the subsequent matching condition of normal velocities are applied at interface:

ψ4x (−L, y) =



−µ
κ
ψ4 (−L, y) , − h ≤ y ≤ −b,

ψ2x (−L, y) , − b ≤ y ≤ −a,

ψ1x (−L, y) , − a ≤ y ≤ a,

ψ3x (−L, y) , a ≤ y ≤ b,
−µ
κ
ψ4 (−L, y) , b ≤ y ≤ h.

(5.43)

Therefore, using equations (5.8), (5.12), (5.13) and (5.19) in (5.43), we obtain

−
∞∑
n=0

D+
n ςnYne

iςnL +
∞∑
n=0

D−n ςnYne
−iςnL

=



iµ

κ

(
∞∑
n=0

D+
n Yne

iςnL +
∞∑
n=0

D−n Yne
−iςnL

)
, − h ≤ y ≤ −b,

−
∞∑
n=0

Bnκn cos[λn(y + a)], −b ≤ y < −a,

1−
∞∑
n=0

Anϑn cos[τn(y + a)], −a ≤ y < a,

−
∞∑
n=0

Cnκn cos[λn(y − a)], a ≤ y < b,

iµ

κ

(
∞∑
n=0

D+
n Yne

iςnL +
∞∑
n=0

D−n Yne
−iςnL

)
, b ≤ y ≤ h,

(5.44)
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which, when multiplied by Ym, integrated from −h to h, and used in accordance

with the orthogonality relation (5.21), yields

−D+
me

iςmL +D−me
−iςmL =

1

ςmGm

{
R0m −

∞∑
n=0

AnϑnRnm −
∞∑
n=0

BnκnPnm

−
∞∑
n=0

CnκnQnm +
iµ

κ

∞∑
n=0

DnSmne
iςnL +

iµ

κ

∞∑
n=0

D−n Smne
−iςnL

+
iµ

κ

∞∑
n=0

DnHmne
iςnL +

iµ

κ

∞∑
n=0

D−nHmne
−iςnL

}
, (5.45)

where

Hmn =

∫ −b
−h

Y4m (y)Y4n (y) dy and Smn =

∫ h

b

Y4m (y)Y4n (y) dy.

Similarly, the continuity conditions of the fluid pressure at x = L are

ψ6 (L, y) = ψ4 (L, y) , − a ≤ y ≤ a. (5.46)

On using equations (5.8) and (5.19) in (5.46), we get

∞∑
n=0

Tn cos[τn(y + a)] =
∞∑
n=0

D+
n Yne

−iςnL +
∞∑
n=0

D−n Yne
iςnL. (5.47)

The multiplying of equation (5.47) with cos[τm(y+a)], and integrating it from −a

to a and then employing the orthogonality relation (5.10), we have the form

Tm =
1

aεm

(
∞∑
n=0

D+
nRmne

−iςnL +
∞∑
n=0

D−nRmne
iςnL

)
. (5.48)

The matching condition of the fluid pressure at interface is

ψ7 (L, y) = ψ4 (L, y) , − b ≤ y ≤ −a. (5.49)

On using equations (5.12) and (5.19) in (5.49), we get

∞∑
n=0

Mn cos[λn(y + a)] =
∞∑
n=0

D+
n Yne

−iςnL +
∞∑
n=0

D−n Yne
iςnL. (5.50)
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Again, multiplying equation (5.50) with cos[λm(y + b)], integration it from −b to

−a and applying the orthogonality relation (5.17), it is found that

Mm =
1

Fm

(
∞∑
n=0

D+
n Pmne

−iςnL +
∞∑
n=0

D−n Pmne
iςnL

)
, (5.51)

The continuity condition of the fluid pressure at x = L is

ψ5 (L, y) = ψ4 (L, y) , a ≤ y ≤ b. (5.52)

Using equations (5.13) and (5.19) in (5.52), we get

∞∑
n=0

Kn cos[λn(y − a)] =
∞∑
n=0

D+
n Yne

−iςnL +
∞∑
n=0

D−n Yne
iςnL. (5.53)

On multiplying equation (5.53) with cos[λm(y − a)], integrating the result from a

to b and employing the orthogonality relation (5.17), we get

Km =
1

Fm

(
∞∑
n=0

D+
nQmne

−iςnL +
∞∑
n=0

D−nQmne
iςnL

)
. (5.54)

In order to find the unknown coefficients for region R4, at x = L, the related

matching condition of normal velocities are used at interface

ψ4x (L, y) =



µ

κ
ψ4 (L, y) , − h ≤ y ≤ −b,

ψ7x (L, y) , − b ≤ y ≤ −a,

ψ6x (L, y) , − a ≤ y ≤ a,

ψ5x (L, y) , a ≤ y ≤ b,

µ

κ
ψ4 (L, y) , b ≤ y ≤ h.

(5.55)
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Therefore, using equations (5.8), (5.12), (5.13) and (5.19) into (5.55), we obtain

−
∞∑
n=0

D+
n ςnYne

−iςnL +
∞∑
n=0

D−n ςnYne
iςnL

=



−iµ
κ

(
∞∑
n=0

D+
n Yne

−iςnL +
∞∑
n=0

D−n Yne
iςnL

)
, − h ≤ y ≤ −b,

∞∑
n=0

Mnκn cos[λn(y + a)], −b ≤ y < −a,
∞∑
n=0

Tnϑn cos[τn(y + a)], −a ≤ y < a,

∞∑
n=0

Knκn cos[λn(y − a)], a ≤ y < b,

−iµ
κ

(
∞∑
n=0

D+
n Yne

−iςnL +
∞∑
n=0

D−n Yne
iςnL

)
, b ≤ y ≤ h,

(5.56)

which on multiplying with Ym, integrating it from −h to h and utilizing the

orthogonality relation (5.56) yields

−D+
me
−iςmL +D−me

iςmL =
1

ςmGm

{
∞∑
n=0

TnϑnRnm +
∞∑
n=0

MnκnPnm

+
∞∑
n=0

KnκnQnm −
iµ

κ

∞∑
n=0

DnSmne
−iςnL − iµ

κ

∞∑
n=0

D−n Smne
iςnL

−iµ
κ

∞∑
n=0

DnHmne
−iςnL − iµ

κ

∞∑
n=0

D−nHmne
iςnL

}
. (5.57)

Solving (5.45)and (5.57) simultaneously, we get

D±m =
∓1

4ςmGm cos (ςmL)

{
R0m −

2µ

κ

∞∑
n=0

D+
n (Smn +Hmn) sin (ςnL)

+
2µ

κ

∞∑
n=0

D−n (Smn +Hmn) sin (ςnL) +
∞∑
n=0

(Tn − An)ϑnRnm

+
∞∑
n=0

(Mn −Bn)κnPnm +
∞∑
n=0

(Kn − Cn)κnQnm

}

− 1

4iςmGm sin (ςmL)

{
R0m +

2iµ

κ

∞∑
n=0

D+
n (Smn +Hmn) cos (ςnL)

+
2iµ

κ

∞∑
n=0

D−n (Smn +Hmn) cos (ςnL)−
∞∑
n=0

(Tn + An)ϑnRnm

−
∞∑
n=0

(Mn +Bn)κnPnm −
∞∑
n=0

(Kn + Cn)κnQnm

}
. (5.58)
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In this way, equation (5.58) lead to infinite system of equations in which D+
m and

D−m ; m = 0, 1, 2, ..., are unknowns.

To determine the unknown model coefficients, these are truncated and inverted.

Following the acquiring of the values of D+
m and D−m ; m = 0, 1, 2, ... the quantities

{Am, Bm, Cm, Tm,Mm, Km} ; m = 0, 1, 2, ... are found easily by using equations

(5.26), (5.31), (5.38), (5.48), (5.51) and (5.54).

It is worth noting that the vertical step-discontinuities are transferred to rigid/hard

ones by setting µ = 0 in equation (5.58).

5.3 Energy Balance

The energy flux/power inside the duct regions is defined by the formula given be-

low:

∂E
∂t

=
1

2
Re

{
i

∫
Ω

ψ

(
∂ψ

∂x

)∗
dy

}
, (5.59)

where, superscript asterisk (*) denotes the complex conjugate.

From the definition of energy flux/power, the incident power is found to be

Pinc = a.

Likewise, the power/energy flux components in duct regions are:

P1 =
1

2
Re

{
∞∑
n=o

|An|2ϑnεn

}
, (5.60)

P2 =
1

2a
Re

{
∞∑
n=o

|Bn|2κnFn

}
, (5.61)

P3 =
1

2a
Re

{
∞∑
n=o

|Cn|2κnFn

}
, (5.62)



Scattering Attributes of Planar Trifurcated Waveguide Structure with Finite
Discontinuities 98

P5 =
1

2a
Re

{
∞∑
n=o

|Kn|2κnFn

}
, (5.63)

P6 =
1

2
Re

{
∞∑
n=o

|Tn|2ϑnεn

}
, (5.64)

and

P7 =
1

2a
Re

{
∞∑
n=o

|Mn|2κnFn

}
. (5.65)

It is important to note that the power supplied to the system is equal to the sum

of scattering powers in different duct regions, that is;

Pinc = P1 + P2 + P3 + P5 + P6 + P7, (5.66)

which is known as conserved power identity. We can scale the incident power at

unity for analysis purposes by dividing equation (5.66) by a which is,

1 = E1 + E2 + E3 + E5 + E6 + E7, (5.67)

where, Ej = Pj/a ; j = 1, 2, 3, 5, 6, 7.

Note that Ej, j = 1, 2, 3, 5, 6, 7 denote the energy/power flux components in duct

sections Rj; j = 1, 2, 3, 5, 6, 7 for which the incident power is being scaled at unity.

5.4 Numerical Results and Discussions

This section provides graphical illustration of the scattered fields. For the purpose,

we truncate and solve the infinite system given by equation (5.58) to compute un-

known coefficients to be used in eigenfunction expansion of respective field poten-

tials. The underlying discussion is mainly focused in three ways while considering

the waveguide structure with (b 6= h) and without step-discontinuities (b = h).
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Figure 5.2: Radiated energy versus frequency (f) for all Robin type
(mixed) bounding walls (a) with step-discontinuity (b 6= h) (b) without step-
discontinuity (b = h) where a = 0.24m, b = 3a, p = q = r = s = µ = κ = 1 and

N = 10.

The current study’s main idea is to maintain pressure and normal velocity conti-

nuity at discrete transverse points across an axial duct discontinuity, as opposed

to analytical matching, which aims to consistently enforce continuity conditions.

As a result, numerical matching cannot be expected to be as accurate as analytical

matching; however, expectations should in principle tend toward the approxima-

tion obtained while matching analytically as long as the number and location of

the points at which numerical matching takes place are carefully chosen. This
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is true for both numerical and analytical mode matching; prior to matching, an

adequate number of higher order axial modes must be predicted correctly so that

the sound’s pressure and velocity fields are properly represented, particularly on

both sides of a discontinuity.

Figures 5.2(a) and 5.2(b) are plotted for power distribution against frequency

regime f with (b 6= h) and without step-discontinuity (b = h), respectively. We

have observed that the reflected power of R1 goes to minimum and transmitted

power of region R6 behaves conversely after f = 100Hz.

However, the sum of the reflected and transmitted powers is unity that successfully

testifies the conserve power identity (5.67), as shown in Figures 5.2(a) and 5.2(b).

Following are the key observations:

• The presence of vertical discontinuity reveals higher amount of energy to be

observed as compared in the absence of discontinuity.

• The number of cut-on modes reduce to fewer one when step of discontinu-

ity is removed. However, more cut-on modes appeared at low frequencies

(f < 300Hz) which show that more energy is absorbed.

• Out of all reflected regions, Rj; j = 1, 2, 3 , R1 is the dominating region,

where most of the power is reflected. Similarly, out of all transmitted regions,

Rj; j = 5, 6, 7 , R6 is the dominating region.

• It is observed that after certain level of frequency, say 300Hz, most of the

energy is transmitted through regions, Rj; j = 5, 6, 7.

• It can also be observed that a certain significant amount of absorption of

energy occurs in Figure 5.2(a).

• Total energy remains conserved for both cases, when (b 6= h) and (b = h).

• For different frequencies, a tabular description of the power propagating in

different duct sections, Rj; (j = 1 − 3, 5 − 7) of the trifurcated lined duct

contained by an expansion chamber is shown (Table 5.1 and Table 5.2).
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Figure 5.3: Radiated energy versus (k×a) for all Robin type (mixed) bounding
walls (a) with step-discontinuity (b 6= h) (b) without step-discontinuity (b = h)

where a = 0.24m, b = 3a, p = q = r = s = µ = κ = 1 and N = 10.

The same depiction is discussed in Figures 5.3(a) and 5.3(b) where power distri-

bution is observed verses height of the duct a = k × a in region R1, which indeed

is a region of incident.

We see that most of the energy is transmitted in region R6 when the duct height

is increased after k × a = 1.3m.

However, the sum of the reflected and transmitted powers is unity that satisfies

the conserve power identity (5.67), as shown in Figures 5.3(a) and 5.3(b).
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The key findings are summarized below:

• The number of cut-on modes become fewer when step of discontinuity is

removed. Also more cut-on modes are observed for larger duct heights,

which show that more energy is absorbed.

• Out of all reflected regions, Rj; j = 1, 2, 3 , R1 is the dominating region .

• The regionR1 is dominated among all other reflected regions, whereas region

R6 is dominated in transmitted regions.

• It is observed that after certain level of the duct height (k × a > 1.15274m),

most of the energy is transmitted through regions, Rj; j = 5, 6, 7.

• It is also noted that when the dimensions of the duct spacing k× a rise, the

values of the reflection decrease.

• Total energy remains conserved for either case.

• In tabular form (Table 5.3 and Table 5.4), a brief description of the radiated

power in different duct regions, Rj; (j = 1− 3, 5− 7) of the trifurcated lined

duct contained by an expansion chamber is presented for different symmetric

heights.

Figures 5.4(a) and 5.4(b) are plotted to see the reflected power behavior against

frequency regime (1Hz − 750Hz), with and without multiple step-discontinuities.

These Figures depicts that before f = 300Hz we observe a prominent reflection

for all impedance, rigid and soft cases.

Following are the key observations:

• More cut-on modes are observed for discontinuous case whereas, the cut-on

modes are reduced considerably when step of discontinuities are removed.

• More energy is absorbed in case of step-discontinuity, on the other hand, less

amount of energy is absorbed when step of discontinuity is removed.
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Table 5.1: Discontinuous trifurcated waveguide, when ā = 0.24m, b̄ = 3ā,
h̄ = 5ā, p = q = r = s = µ = κ = 1 and L̄ = 0.25m by varying frequency.

f E1 E2 E3 E6 E5 E7 ET

10 0.958932 0 0 0.0410685 0 0 1

40 0.0402103 0 0 0.95979 0 0 1

100 0.862736 0.0149758 0.0149758 0.10624 0.000536415 0.000536415 1

130 0.228493 0.125491 0.125491 0.393489 0.0635184 0.0635184 1

160 0.112258 0.149429 0.149429 0.362452 0.113215 0.113215 1

220 0.272394 0.201607 0.201607 0.220818 0.0517868 0.0517868 1

310 0.0206063 0.00211088 0.00211088 0.626226 0.174473 0.174473 1

400 0.0587968 0.0188314 0.0188314 0.265664 0.318938 0.318938 1

550 0.000504559 0.00807712 0.00807712 0.394229 0.294556 0.294556 1

640 0.00268968 0.00441115 0.00441115 0.528028 0.23023 0.23023 1

700 0.000880371 0.00404187 0.00404187 0.657877 0.16658 0.16658 1

745 0.0117687 0.00391965 0.00391965 0.660891 0.159751 0.159751 1

Table 5.2: Planar trifurcated waveguide, when ā = 0.24m, b̄ = h̄ = 3ā,
p = q = r = s = µ = κ = 1 and L̄ = 0.25m by varying frequency.

f E1 E2 E3 E6 E5 E7 ET

10 0.976583 0 0 0.0234168 0 0 1

40 0.844128 0 0 0.155872 0 0 1

100 0.12856 0.111061 0.111061 0.41693 0.116195 0.116195 1

130 0.21816 0.122274 0.122274 0.273464 0.131914 0.131914 1

160 0.243915 0.122757 0.122757 0.232605 0.138983 0.138983 1

220 0.24974 0.12025 0.12025 0.18683 0.161466 0.161466 1

310 0.165501 0.084435 0.084435 0.14222 0.261705 0.261705 1

400 0.00775665 0.00261788 0.00261788 0.597654 0.194677 0.194677 1

550 0.0140883 0.0340809 0.0340809 0.567793 0.174979 0.174979 1

640 0.00330787 0.00658215 0.00658215 0.565428 0.20905 0.20905 1

700 0.0012613 0.000544077 0.000544077 0.656883 0.170384 0.170384 1

745 0.0412523 0.0050833 0.0050833 0.706897 0.120842 0.120842 1
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Table 5.3: Discontinuous trifurcated waveguide, when f = 230Hz, b̄ = 3ā,
h̄ = 5ā, p = q = r = s = µ = κ = 1 and L̄ = 0.25m by varying height (k × a).

k×a E1 E2 E3 E6 E5 E7 ET

1.0097 0.243903 0.0946318 0.0946318 0.205654 0.180589 0.180589 1

1.27895 0.175393 0.0181647 0.0181647 0.419297 0.18449 0.18449 1

1.40517 0.00338912 0.048954 0.048954 0.874791 0.0119559 0.0119559 1

1.60711 0.0892234 0.100162 0.100162 0.398523 0.155964 0.155964 1

2.00257 0.00893343 0.0323457 0.0323457 0.780686 0.0728446 0.0728446 1

2.22975 0.0245811 0.0509755 0.0509755 0.604486 0.134491 0.134491 1

2.44852 0.0129778 0.0258586 0.0258586 0.643113 0.146096 0.146096 1

2.70095 0.00179481 0.00329189 0.00329189 0.816331 0.0876454 0.0876454 1

2.80192 0.000361318 0.000741054 0.000741054 0.859219 0.0694688 0.0694688 1

3.00386 0.000231951 0.000592558 0.000592558 0.913753 0.042415 0.042415 1

3.2058 0.00260713 0.00703003 0.00703003 0.939682 0.0218255 0.0218255 1

3.34884 0.0251088 0.00512428 0.00512428 0.932443 0.0160996 0.0160996 1

Table 5.4: Planar trifurcated waveguide, when f = 230Hz, b̄ = h̄ = 3ā,
p = q = r = s = µ = κ = 1 and L̄ = 0.25m by varying height (k × a).

k×a E1 E2 E3 E6 E5 E7 ET

1.0097 0.247425 0.119255 0.119255 0.179454 0.167305 0.167305 1

1.27895 0.190061 0.092207 0.092207 0.221003 0.202261 0.202261 1

1.40517 0.136594 0.0669746 0.0669746 0.334544 0.197456 0.197456 1

1.60711 0.0503648 0.0255517 0.0255517 0.604299 0.147116 0.147116 1

2.00257 0.0179779 0.0410638 0.0410638 0.768637 0.0656289 0.0656289 1

2.22975 0.0236446 0.0534853 0.0534853 0.631954 0.118715 0.118715 1

2.44852 0.015538 0.03384 0.03384 0.673735 0.121523 0.121523 1

2.70095 0.00409327 0.0101519 0.0101519 0.800471 0.087566 0.087566 1

2.80192 0.00150671 0.00460158 0.00460158 0.847926 0.070682 0.070682 1

3.00386 0.000212458 0.000151373 0.000151373 0.921059 0.0392129 0.0392129 1

3.2058 0.036013 0.00496306 0.00496306 0.924635 0.0147127 0.0147127 1

3.34884 0.0429858 0.00521982 0.00521982 0.905862 0.0203563 0.0203563 1
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• It can also be observed that, more number of cut-on modes appeared in

case of soft walls with step-discontinuities. The occurrence of these cut-on

modes is responsible to attenuate the sound propagating through transmitted

regions.

• Figure 5.4(a) depicts that, cut-on modes reduce in number when the outer

boundaries of the duct regions are rigid, which ultimately resulted a lesser at-

tenuation. More reflected energy results that the sound attenuates in trans-

mitted region.
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Figure 5.4: The reflected energy versus frequency (f) containing compressible
fluid (a) with step-discontinuity (b 6= h) (b) without step-discontinuity (b = h),
when all the outer boundaries are Impedance, Rigid and Soft respectively, for

a = 0.24m, b = 3a, h = 5a and N = 10.
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• It is observed that after certain level of frequency, say 300Hz, the reflected

energy (for all impedance, rigid and soft cases ) goes to its minimum value.

• Figure 5.4(a) depicts that, cut-on modes reduce in number when the outer

boundaries of the duct regions are rigid, which ultimately resulted a lesser at-

tenuation. More reflected energy results that the sound attenuates in trans-

mitted region.

• We’ve also observed that at certain cut-on (off) frequencies in certain re-

gions, the reflected field coefficient is at its highest. This relates to the min-

imum downstream transmission or, most likely, the maximum attenuation

produced.

Figures 5.5(a) and 5.5(b) are plotted to see the reflected power behavior against

the symmetric height (k × a), with and without multiple step-discontinuities.

It is noted that on increasing the duct height for all impedance, rigid and soft

cases, the reflected energy goes to minimum.

Following are the key observations:

• More cut-on modes are observed for discontinuous case, however, the cut-on

modes are reduced considerably when step of discontinuities are removed.

• More energy is absorbed in the presence of step-discontinuity.

• It can also be observed that, most of the energy is reflected in case of soft

walls with step-discontinuities.

• It is observed that after certain level of the duct height, say 2.0m, the re-

flected energy for all impedance, rigid and soft case goes to its minimum

value.

• More reflected energy results more sound attenuate in the transmitted re-

gion.

• It is noted that when the dimensions of the duct spacing (k × a) increase,

the values of the reflection decrease.
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Figure 5.5: The reflected energy versus (k × a) containing compressible fluid
(a) with step-discontinuity (b 6= h) (b) without step-discontinuity (b = h),
when all the outer boundaries are Impedance, Rigid and Soft respectively, for

a = 0.24m, b = 3a, h = 5a and N = 10.

In this part, we are interested to observe the reflected energy by considering the

parametric setting as used by Rawlins [9]. The following values for the specific

impedance (ζ = ξ + iη) which is fibrous sheet, are used ξ = 0.5, −1.0 < η < 3.0

and for perforated sheet ξ = 1, −1.0 < η < 3.0.

Keeping in mind that impedance parameters used in this article are related with

that of Rawlins [9] as p = 1, q =
iζ

k
. Figures 5.6(a) and 5.7(a) are plotted in

the presence of step-discontinuities (b 6= h) against frequency regime, respectively.

Whereas Figures 5.6(b) and 5.7(b) are plotted in the absence of step-discontinuities
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(b = h).

It’s also worth noticing that altering the porosity parameter η changes the reflected

energy in theR1 region dramatically. The conversion of eigenvalues from imaginary

number to real or complex value, and vice versa, causes these variations.
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Figure 5.6: The reflected flux/power components against frequency con-
taining compressible fluid in (a) discontinuous (b) continuous waveguides for

a = 0.24m, b = 3a, ξ = 0.5, p = r = 1, q = s = iζ and N = 10.

Furthermore, for higher frequencies, bonded absorbent material has a relatively

smooth frequency response. When the value of η is increased, the reflected energy

curves show downward spikes. These emerge as a result of the appearance of new
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cut-on duct modes. Furthermore, in the fibrous case, there are more abrupt curves

than in the perforated lining, resulting in more attenuation.
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Figure 5.7: The reflected flux/power components against frequency con-
taining compressible fluid in (a) discontinuous (b) continuous waveguides for

a = 0.24m, b = 3a, ξ = 1, p = r = 1, q = s = iζ and N = 10.

Following are the key observations:

• More fluctuations in reflected energy can be observed at low frequencies

which decrease gradually as frequency increases.

• The reflected energy reduces considerably by increasing the frequency regime.

• Further, in case of no fibrous sheet, the curve pattern is quite smooth and

very few modes appeared as cut-on.
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• It can also be observed that, most of the energy is reflected in case of soft

walls with step-discontinuities. However, the increasing value of η, increases

the number of cut-on modes that results more sound attenuation propagating

through transmitted region.

• It is observed that after certain level of frequency, say 300Hz, the reflected

energy for all impedance, rigid and soft case goes to its minimum value.

• It is also observed that, the cut-on modes reduced considerably when step of

discontinuity is removed which results less sound attenuate in that region.

• It is also observed that the reflected field coefficient is maximum at certain

cut-on (off) frequencies of various regions.

-4 -2 0 2 4
-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

y

ℜ
(ψ

j)

ψ4

ψ3

ψ2

ψ1

(a)

-4 -2 0 2 4
-0.6

-0.4

-0.2

0.0

0.2

0.4

y

ⅈ(
ψ
j)

ψ4

ψ3

ψ2

ψ1

(b)

Figure 5.8: The real (a) and imaginary (b) parts of pressure at x = −L, for
a = 0.24m, b = 3a, h = 5a, p = q = r = s = µ = κ = 1 and N = 20.
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Now, the continuity conditions of pressure and normal velocity at x = −L are

sketched at interface to confirm the truncated solution.
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Figure 5.9: The real (a) and imaginary (b) parts of normal velocity at x = −L,
for a = 0.24m, b = 3a, h = 5a, p = q = r = s = µ = κ = 1 and N = 20.

Through Figure 5.8, it can be seen that the real and imaginary parts of pressures

ψj( − L, y), j = 1, 2, 3 match exactly to the real and imaginary part of pressure

ψ4(− L, y).

Likewise, Figure 5.9 shows that the real and imaginary parts of normal velocities

ψ4x( − L, y), −h < y < h match exactly with ψjx( − L, y), j = 1, 2, 3 in their

respective regions and −ψ4(−L, y), (for −h < y < −b and b < y < h), respectively.
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Similarly, the pressure and normal velocity continuity conditions at x = L are

sketched at interface to confirm the truncated solution.

Through Figure 5.10, it can be examine that the real and imaginary parts of

pressures ψj(L, y), j = 5, 6, 7 match exactly to the real and imaginary part of

pressure ψ4(L, y).
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Figure 5.10: The real (a) and imaginary (b) parts of pressure at x = L, for
a = 0.24m, b = 3a, h = 5a, p = q = r = s = µ = κ = 1 and N = 20.

Likewise, Figure 5.11 shows that the real and imaginary parts of normal velocities

ψ4x(L, y), −h < y < h match exactly with ψjx(L, y), j = 5, 6, 7 in their respective
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regions and ψ4(L, y), (for −h < y < −b and b < y < h), respectively.
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Figure 5.11: The real (a) and imaginary (b) parts of normal velocity at x = L,
for a = 0.24m, b = 3a, h = 5a, p = q = r = s = µ = κ = 1 and N = 20.

One may consider the vertical symmetry to broken down the problem into two

sub-problems as is done in [69].

The explanation related to this point is added in conclusion.

The point-wise variation of energies verses N are shown Figure 5.12, which clearly

satisfy the conserve energy identity (5.67).
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Figure 5.12: The scattering energies plotted against number of terms N for
discontinuous structure where a = 0.24m, b = 3a, h = 5a, L = 0.25m, and

f = 530Hz



Chapter 6

Analysis of Scattering in a

Flexible Trifurcated Lined

Waveguide with Step

Discontinuities

In this chapter, analysis of scattering in a flexible trifurcated lined waveguide with

step discontinuities is inquired through the MM approach.

Helmholtz’s equation, as well as Dirichlet and higher order boundary conditions,

govern the modelled problem.

Along the inner surface of the expansion chamber, an acoustically absorbent lining

is added. Edge conditions are also enforced to define the physical behaviour of

elastic membrane at finite edges.

The effect of the imposed edge conditions at the membrane’s connections along

the duct is thoroughly discussed.

The reflected and absorbed energy of scattered fields are depicted with and without

structural discontinuities, as well as by varying the duct size versus various physical

parameters. To prove the validity of the MM approach, appropriate numerical

simulations are also performed.

115
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6.1 Mathematical Formulation

In this section, we provide a mathematical interpretation of the scattering problem

under discussion. We first discuss the physical configuration of the problem in

Section 6.1.1 and then enlist the governing equations in Section 6.1.2. In Section

6.1.3, we provide the travelling wave formulations of the scattering potentials in

various sections of the waveguide.

6.1.1 Geometric Configuration

Consider a two-dimensional infinite trifurcated waveguide, occupied by a com-

pressible fluid of density ρ̄ and speed of sound c̄, having step discontinuities and

an exterior in vacou. Precisely, assume that the waveguide consists of six sub-

regions (see Figure 6.1)

R+
1 :=

{
(x̄, ȳ) ∈ R2 | x̄ ∈ (−∞,−L̄), y ∈ (−ā, ā)

}
,

R+
2 :=

{
(x̄, ȳ) ∈ R2 | x̄ ∈ (−∞,−L̄), y ∈ (−b̄,−ā)

}
,

R+
3 :=

{
(x̄, ȳ) ∈ R2 | x̄ ∈ (−∞,−L̄), y ∈ (ā, b̄)

}
,

R−1 :=
{

(x̄, ȳ) ∈ R2 | x̄ ∈ (L̄,∞), y ∈ (−ā, ā)
}
,

R−2 :=
{

(x̄, ȳ) ∈ R2 | x̄ ∈ (L̄,∞), y ∈ (−b̄,−ā)
}
,

R−3 :=
{

(x̄, ȳ) ∈ R2 | x̄ ∈ (L̄,∞), y ∈ (ā, b̄)
}
,

R4 :=
{

(x̄, ȳ) ∈ R2 | x̄ ∈ (−L̄, L̄), y ∈ (−h̄, h̄)
}
.

The waveguide is assumed to have step discontinuities at x̄ = ±L along vertical

line segments −h̄ ≤ ȳ ≤ −b̄ and b̄ ≤ ȳ ≤ h̄.

An incident acoustic wave with time-harmonic dependence e−iωt is propagating in

the region R+
1 from negative x-direction towards x̄ = 0, where it scatters into an

infinite number of reflected and transmitted modes.

Here, i =
√
−1 and ω ∈ R is the angular frequency of the incident field. Our aim

here is to analyze the scattering potentials within different regions and to discuss
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the energy balance in the waveguide. In specific, we are interested in the analysis

of the scattered and transmitted power.
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Figure 6.1: The geometry of the problem

Nota Bene:

For convenience, various quantities are frequently made non-dimensional using the

time scale ω−1 and the length scale k−1 under the transformations

t = ωt̄, x = kx̄ and y = kȳ.

Here, k is the wavenumber and the superposed bar is used throughout this article to

indicate dimensional quantities. Accordingly, the bar is dropped from the notation

whenever the non-dimensional counterpart of a quantity is intended.

6.1.2 Governing Equations

The propagation of the time-harmonic acoustic wave in the waveguide is governed

by non-dimensional Helmholtz equation

(
∇2 + 1

)
ψ(x, y) = 0, −∞ < x <∞, (6.1)
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where

ψ(x, y) :=


ψ±j (x, y), (x, y) ∈ R±j , j = 1, 2, 3,

ψ4(x, y), (x, y) ∈ R4,

represents the field potential in the waveguide.

The boundaries of different regions are defined as follows:

(a) Regions R±1 have acoustically rigid boundaries.

(b) Regions R±2 and R±3 have elastically flexible membrane type boundaries.

(c) Region R4 has absorbing linings along boundaries and thus, impedance type

conditions are imposed.

Therefore, ψ satisfies the boundary conditions

∂ψ+
j

∂y
=0, −∞ < x < −L, y = a, j = 1, 3, (6.2)

∂ψ+
j

∂y
=0, −∞ < x < −L, y = −a, j = 1, 2, (6.3)

∂ψ−j
∂y

=0, L < x <∞, y = a, j = 1, 3, (6.4)

∂ψ−j
∂y

=0, L < x <∞, y = −a, j = 1, 2, (6.5)(
∂2

∂x2
+ µ2

)
∂ψ+

j

∂y
± αψ+

j =0, −∞ < x < −L , y = b(δ3j − δ2j), j = 3, 2,

(6.6)(
∂2

∂x2
+ µ2

)
∂ψ−j
∂y
± αψ−j =0, L < x <∞, , y = b(δ3j − δ2j), j = 3, 2,

(6.7)

ψ4 ± iχ
∂ψ4

∂y
=0, −L < x < L y = ±h, (6.8)

ψ4 ± iχ
∂ψ4

∂x
=0, x = ∓L, −h ≤ y ≤ −b or b ≤ y ≤ h, (6.9)
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where δmn represents the Kronecker’s delta function and χ = ξ + iη is the specific

impedance of the absorbing lining with acoustic resistance ξ and reactance η. It

is specified that (the membrane wave-number) α and (the fluid loading parameter

in vacuo) µ are defined by

α =
ω2ρ

Tk3
and µ :=

c

cm
,

where ρ is the fluid density, c is the speed in compressible fluid (air), cm is the

wave speed on membrane, and T is the membrane tension [58]. In additions to

the boundary conditions, the zero-displacement edge conditions,

ψ+
2y(−L,−b) = 0, (6.10a)

ψ+
3y(−L, b) = 0, (6.10b)

ψ−2y(L,−b) = 0, (6.10c)

ψ−3y(L, b) = 0, (6.10d)

are imposed at the joints between the membranes and the vertical strips to guar-

antee a unique solution to the boundary value problem.

These, so-called, edge conditions describe the physical nature of the connections

and significantly affect the scattering profile of the waveguide. We refer, for in-

stance, to [66] for a detailed discussion and a list of suitable edge conditions.

6.1.3 Traveling Wave Formulations

We discuss the traveling wave formulations for different regions separately.

6.1.3.1 Regions R±1

Note that, Eqs. (6.1)–(6.5) suggest that the eigenmodes for the regions R±1 are

ψ±1n(x, y) = Y1n (y) e∓iϑn(x±L), (6.11)
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where ϑn =
√

1− τ 2
n, for n = 0, 1, 2, · · · , is the wave-number of the nth reflected

mode. Here, τn is the eigenvalue which satisfies the dispersion relation

sin (2τna) = 0, n = 0, 1, 2, · · · , (6.12)

and Y1n (y) = cos (τn(y + a)) is the corresponding eigenfunction. Consequently,

the eigen-expansions of the potentials ψ±1 are given by

ψ+
1 (x, y) =ei(x+L) +

∞∑
n=0

A+
nψ

+
1n(x, y), (6.13)

ψ−1 (x, y) =
∞∑
n=0

A−nψ
−
1n(x, y). (6.14)

The incident wave is defined by the first term in Eq. (6.13), whereas the reflected

field is described by the summation term. The constants A+
n , for n = 0, 1, 2, · · · ,

are the unknown reflected mode coefficients which can be found applying the

orthogonality relation

∫ a

−a
Y1m (y)Y1n (y) dy = aδmnεm, m, n = 0, 1, 2, · · · , (6.15)

satisfied by the eigenfunctions Y1n (y) together with the matching conditions on

potential ψ at the interfaces. In Eq. (6.15), εm = 2 for m = 0 and εm = 1,

otherwise. The unknowns A−n in Eq. (6.14) can also be found in the similar

fashion.

6.1.3.2 Regions R±2

In regions R±2 , the eigenmodes can be calculated using (6.1)-(6.7) as

ψ±2n(x, y) = Y2n (y) e∓iκn(x±L), (6.16)

where κn =
√

1 + λ2
n, for n = 0, 1, 2, · · · , is the wave-number of the nth reflected

mode, λn is the eigenvalue, and Y2n (y) = cosh (λn(y + a)) are the corresponding
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eigenfunctions in the regions R±2 . Thus, the eigen-expansions of field potentials

ψ±2 are given by

ψ±2 (x, y) =
∞∑
n=0

B±n ψ
±
2n(x, y), (6.17)

where B±n are unknown coefficients to be specified. Due to membrane type bound-

ary at y = −b, eigenvalue λn satisfies the dispersion relation

(
−1− λ2

n + µ2
)
λn sinh (λn(−b+ a))− α cosh (λn(−b+ a)) = 0, n = 0, 1, 2, · · ·

(6.18)

The eigenfunction Y2n (y) satisfies the generalized orthogonality relation

α

∫ −a
−b

Y2n(y)Y2m(y)dy = Emδmn − Y ′2n(−b)Y ′2m(−b), m, n = 0, 1, 2, · · · (6.19)

where

Em :=
α(b− a)

2
+

(
1 + λ2

m − µ2

2
+ λ2

m

)
sinh2 (λm(b− a)) .

6.1.3.3 Regions R±3

In regions R±3 , the eigenmodes are given by

ψ±3n(x, y) = Y3n (y) e∓iκn(x±L), (6.20)

where Y3n (y) = cosh (λn(y − a)) is the eigenfunction corresponding to the eigen-

value λn, for n = 0, 1, 2, · · · , in the regions R±3 .

Thanks to the membrane-type boundary at y = b, eigenvalue λn satisfies the

dispersion relation

(
−1− λ2

n + µ2
)
λn sinh (λn(b− a)) + α cosh (λn(b− a)) = 0. (6.21)

The functions Y3n (y) satisfies the generalized orthogonality relation

α

∫ b

a

Y3n(y)Y3m(y)dy = Emδmn − Y ′3n(b)Y ′3m(b), m, n = 0, 1, 2, · · · (6.22)
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The potential in the expanded form in R±3 is given by

ψ±3 (x, y) =
∞∑
n=0

C±n ψ
±
3n(x, y), (6.23)

where the unknown coefficients C±n are to be specified employing the matching

conditions and the generalized orthogonality relation (6.22).

6.1.3.4 Region R4

The eigen expansion of the potential ψ4, thanks to (6.1) and (6.8), is given by

ψ4(x, y) =
∞∑
n=0

Y4n (y)
(
D+
n e
−iςnx +D−n e

iςnx
)
, (6.24)

where D±n , for n = 0, 1, 2, · · · , are constants to be determined and ςn =
√

1− γ2
n

is the nth mode wave-number.

Here, the eigenvalue γn satisfies the dispersion relation

(
1 + χ2γ2

n

)
sin (2γnh) + 2iχγn cos (2γnh) = 0, n = 0, 1, 2 · · · , (6.25)

and the corresponding eigenfunction is written as

Y4n (y) = sin (γn(y + h)) + iχγn cos (γn(y + h)) , n = 0, 1, 2, · · · .

Note that, function Y4n (y) satisfies the orthogonality relation

∫ h

−h
Y4m (y)Y4n (y) dy = Gmδmn, m, n = 0, 1, 2, · · · , (6.26)

where

Gm =
1

4γm

{
2γm

(
iχ+ 2h(1− χ2γ2

m)− iχ cos (4hγm)
)

+ (−1− χ2γ2
m) sin (4hγm)

}
.
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6.2 Mode-matching Solution

We adopt a mode-matching technique for solving the boundary value problem

formulated in Section 6.1. It is built upon the idea of matching pressure and nor-

mal velocity modes across the regions at the interface. The unknown coefficients

A±m, B±m, C±m, and D±m, for m = 0, 1, 2, ..., will be found by using the matching

conditions.

6.2.1 Matching Conditions at x = −L

It’s important to note that the fluid pressure continuity conditions at the matching

interface are given by

ψ4 (−L, y) =


ψ+

2 (−L, y) , −b ≤ y ≤ −a,

ψ+
1 (−L, y) , −a ≤ y ≤ a,

ψ+
3 (−L, y) , a ≤ y ≤ b.

(6.27)

Together with (6.17) and (6.24), the matching condition over [−b,−a] in (6.27)

furnishes
∞∑
n=0

B+
n Y2n (y) =

∞∑
n=0

Y4n (y)
(
D+
n e

iςnL +D−n e
−iςnL

)
. (6.28)

Multiplying (6.28) by Y2m (y), integrating over [−b,−a], and applying the orthog-

onality relation (6.19), we arrive at

B+
m =

α

Em

∞∑
n=0

Pmn
(
D+
n e

iςnL +D−n e
−iςnL

)
+

e1

Em
Y

′

2m (−b) , (6.29)

where

Pmn =

∫ −a
−b

Y2m (y)Y4n (y) dy,

and

e1 :=
∞∑
n=0

B+
n Y

′
2n(−b).

Differentiating (6.17) term-by-term and invoking the edge condition (6.10a), it is
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easy to find that

e1 = ψ+
2y (−L,−b) = 0.

The use of (6.13) and (6.24) together with the matching condition over [−a, a] in

(6.27) leads to

1 +
∞∑
n=0

A+
nY1n (y) =

∞∑
n=0

Y4n (y)
(
D+
n e

iςnL +D−n e
−iςnL

)
. (6.30)

Therefore, by multiplying (6.30) by Y1m (y), integrating the resultant over [−a, a],

and using the orthogonality relation (6.15), we get

A+
m =

−2δm0

εm
+

1

aεm

∞∑
n=0

Rmn

(
D+
n e

iςnL +D−n e
−iςnL

)
, (6.31)

where

Rmn =

∫ a

−a
Y1m (y)Y4n (y) dy.

Similarly, using equations (6.23) and (6.24) into (6.27) for the matching condition

over [a, b], we get

∞∑
n=0

C+
n Y3n (y) =

∞∑
n=0

Y4n (y)
(
D+
n e

iςnL +D−n e
−iςnL

)
. (6.32)

On multiplying equation (6.32) by Y3m (y) , integrating over [a, b], and using the

orthogonality relation (6.22), we get

C+
m =

α

Em

∞∑
n=0

Qmn

(
D+
n e

iςnL +D−n e
−iςnL

)
+

e2

Em
Y

′

3m (b) , (6.33)

where

Qmn =

∫ b

a

Y3m (y)Y4n (y) dy and e2 :=
∞∑
n=0

C+
n Y

′
3n(b).

Taking derivative of (6.23) term-by-term and using the edge condition (6.10b), it

is not difficult to see that

e2 = ψ+
3y (−L, b) = 0.

In terms of the normal velocities, we have the matching conditions
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ψ4x (−L, y) =



−1

iχ
ψ4 (−L, y) , −h ≤ y ≤ −b,

ψ+
2x (−L, y) , −b ≤ y ≤ −a,

ψ+
1x (−L, y) , −a ≤ y ≤ a,

ψ+
3x (−L, y) , a ≤ y ≤ b,

−1

iχ
ψ4 (−L, y) , b ≤ y ≤ h.

(6.34)

Using equations (6.13), (6.17), (6.23), and (6.24) into (6.34), we obtain

−
∑∞

n=0 ςnY4n (y)
(
D+
n e

iςnL −D−n e−iςnL
)

=



1

χ

∞∑
n=0

Y4n (y)
(
D+
n e

iςnL +D−n e
−iςnL

)
, − h ≤ y ≤ −b,

−
∞∑
n=0

B+
n κnY2n (y) , −b ≤ y < −a,

1−
∞∑
n=0

A+
nϑnY1n (y) , −a ≤ y < a,

−
∞∑
n=0

C+
n κnY3n (y) , a ≤ y < b,

1

χ

∞∑
n=0

Y4n (y)
(
D+
n e

iςnL +D−n e
−iςnL

)
, b ≤ y ≤ h.

(6.35)

Multiplying (6.35) by Y4m(y), integrating over [−h, h], and using the orthogonality

relation (6.26), we get

−D+
me

iςmL +D−me
−iςmL =

1

ςmGm

{
R0m −

∞∑
n=0

A+
nϑnRnm −

∞∑
n=0

B+
n κnPnm

−
∞∑
n=0

C+
n κnQnm +

2

χ

∞∑
n=0

Snm
(
D+
n e

iςnL +D−n e
−iςnL

)}
, (6.36)

where

Snm =
(S+

nm + S−nm)

2
,

with

S+
nm =

∫ h

b

Y4n (y)Y4m (y) dy and S−nm =

∫ −b
−h

Y4n (y)Y4m (y) dy.
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6.2.2 Matching Conditions at x = L

The continuity conditions of the fluid pressure at x = L are

ψ4 (L, y) =


ψ−2 (L, y) , −b ≤ y ≤ −a,

ψ−1 (L, y) , −a ≤ y ≤ a,

ψ−3 (L, y) , a ≤ y ≤ b.

(6.37)

Using equations (6.17) and (6.24) into continuity condition for [−b,−a] in (6.37),

we get
∞∑
n=0

B−n Y2n (y) =
∞∑
n=0

Y4n (y)
(
D+
n e
−iςnL +D−n e

iςnL
)
. (6.38)

Multiplying equation (6.38) by Y2m (y), integrating over [−b,−a] and using the

orthogonality relation (6.19) successively, it is found that

B−m =
α

Em

∞∑
n=0

Pmn
(
D+
n e
−iςnL +D−n e

iςnL
)

+
e3

Em
Y

′

2m (−b) , (6.39)

where

e3 =
∞∑
n=0

B−n Y
′

2n(−b).

Thanks to (6.17) and the edge conditions (6.10c), we have

e3 = ψ−2y(L,−b) = 0.

Similarly, using equations (6.14) and (6.24) into the continuity condition over

[−a, a] in (6.37), we obtain

∞∑
n=0

A−nY1n (y) =
∞∑
n=0

Y4n (y)
(
D+
n e
−iςnL +D−n e

iςnL
)
. (6.40)

Multiplying (6.40) by Y1m (y), integrating over [−a, a] and then using the orthog-

onality relation (6.15), we get

A−m =
1

aεm

∞∑
n=0

Rmn

(
D+
n e
−iςnL +D−n e

iςnL
)
. (6.41)
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Finally, using equations (6.23) and (6.24) into the continuity condition over [a, b]

in (6.37), we get

∞∑
n=0

C−n Y3n (y) =
∞∑
n=0

Y4n (y)
(
D+
n e
−iςnL +D−n e

iςnL
)
. (6.42)

Multiplying (6.42) by Y3m (y), integrating over [a, b], and on using the orthogo-

nality relation (6.22), we get

C−m =
α

Em

∑
=∞n=0 Qmn

(
D+
n e
−iςnL +D−n e

iςnL
)

+
e4

Em
Y

′

3m (b) , (6.43)

where e4 :=
∑∞

n=0C
−
n Y

′
3n(b).

Differentiating (6.23) term-by-term and using the edge condition (6.10d), we get

e4 = ψ−3y (L, b) = 0.

On the other hand, the matching conditions for the normal velocity at x = L are

ψ4x (L, y) =



1

iχ
ψ4 (L, y) , −h ≤ y ≤ −b,

ψ−2x (L, y) , −b ≤ y ≤ −a,

ψ−1x (L, y) , −a ≤ y ≤ a,

ψ−3x (L, y) , a ≤ y ≤ b,

1

iχ
ψ4 (L, y) , b ≤ y ≤ h.

(6.44)

Therefore, using (6.14), (6.17), (6.23), and (6.24) into (6.44), we obtain

−
∞∑
n=0

ςnY4n(y)
(
D+
n e
−iςnL −D−n eiςnL

)

=



− 1

χ

∑∞
n=0 Y4n (y)

(
D+
n e
−iςnL +D−n e

iςnL
)
, −h ≤ y ≤ −b,∑∞

n=0B
−
n κnY2n (y) , −b ≤ y < −a,∑∞

n=0A
−ϑnY1n (y) , −a ≤ y < a,∑∞

n=0C
−κnY3n (y) , a ≤ y < b,

− 1

χ

∑∞
n=0 Y4n (y)

(
D+
n e
−iςnL +D−n e

iςnL
)
, b ≤ y ≤ h.

(6.45)
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Multiplying (6.45) by Y4m(y), integrating from [−h, h], and using the orthogonality

relation (6.26), we arrive at

−D+
me
−iςmL +D−me

iςmL =
1

ςmGm

{
∞∑
n=0

A−nϑnRnm +
∞∑
n=0

B−n κnPnm

+
∞∑
n=0

C−n κnQnm −
2

χ

∞∑
n=0

Snm
(
D+
n e
−iςnL −D−n eiςnL

)}
. (6.46)

Therefore, solving (6.36) and (6.46) simultaneously, leads to

D±m =
∓1

4ςmGm cos (ςmL)

{
R0m +

∞∑
n=0

(A−n − A+
n )ϑnRnm +

∞∑
n=0

(B−n −B+
n )κnPnm

+
∞∑
n=0

(C−n − C+
n )κnQnm −

4

iχ

∞∑
n=0

Snm
(
D+
n −D−n

)
sin (ςnL)

}

− 1

4iςmGm sin (ςmL)

{
R0m −

∞∑
n=0

(A−n + A+
n )ϑnRnm −

∞∑
n=0

(B−n +B+
n )κnPnm

−
∞∑
n=0

(C−n + C+
n )κnQnm +

4

χ

∞∑
n=0

Snm
(
D+
n +D−n

)
cos (ςnL)

}
. (6.47)

Therefore, Eq. (6.47) leads to another system of infinite equations in unknown

modal coefficients.

Hence, the quantities A±m, B
±
m, C

±
m and D±m are found by solving Eqs. (6.29), (6.31),

(6.33), (6.39), (6.41), and (6.43) simultaneously.

These equations combine to form an infinite linear system that can be truncated at

a finite number of terms and numerically solved for the unknown modal coefficients.

6.2.3 Energy Balance

The energy flux/power inside the duct regions for fluid and for membrane R±j , for

j = 1, 2, 3, 4, are given by

∂E
∂t

∣∣∣∣∣
fluid

= <
{
i

∫
Ω

ψ

(
∂ψ

∂x

)∗
dy

}
, (6.48)
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and

∂E
∂t

∣∣∣∣∣
membrane

= <
{

i

α

(
∂ψ

∂y

)(
∂2ψ

∂x∂y

)∗}
, (6.49)

where superposed asterisk (*) denotes the complex conjugate, E represents the

energy and Ω is the domain of regions R±1 .

By definition, the incident power is found to be Pinc = 2a. We refer the interested

readers to [58, 67] for more details. Similarly, the power/energy flux components

in duct sections R±j , for j = 1, 2, 3 are

P±1 =
1

2
<

{
∞∑
n=o

|A±n |2ϑnεn

}
,

P±2 =
1

2αa
<

{
∞∑
n=o

|B±n |2κnEn

}
,

P±3 =
1

2αa
<

{
∞∑
n=o

|C±n |2κnEn

}
.

It’s important to note that the power fed into the system equals the sum of the

scattering powers in different duct regions, i.e.,

Pinc = Pabs +
∑
†∈{+,−}

3∑
j=1

P†j . (6.50)

It is called the conserved power identity. We can scale the incident power at unity

for analysis purpose, which is obtained by dividing equation (6.50) by 2a, i.e.,

1 = Eabs +
∑
†∈{+,−}

3∑
j=1

E†j , (6.51)

where E±j = P±j /2a, for j = 1, 2, 3, denote the power/energy flux components in

duct regions R±j . The incident power is scaled at unity in this case. Thus from

equation (6.51), the absorbed power Eabs becomes;

Eabs = 1−
∑
†∈{+,−}

3∑
j=1

E†j . (6.52)
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6.3 Numerical Investigation and Discussion

The infinite system of linear algebraic equations (6.29),(6.31), (6.33), (6.41), (6.43),

(6.39), and (6.47) is truncated by fixing a truncation parameter N ∈ N and setting

m = n = 0, 1, 2, · · · , N . The truncated system consisting of 8(N + 1) equations in

8(N +1) unknown is solved numerically. Throughout this section, we consider the

speed of sound in air c = 343ms−1, density of air ρ = 1.2043kgm−3, the density

of the membranes ρm = 0.1715kgm−3, and T = 350Nm be the tension of the

membranes.

The parametric values of absorbing lining depend upon the specific impedance

χ = ξ + iη of the material in which ξ and η are resistive and reactive components

of specific impedance χ. The values of acoustic resistance and acoustic reactance

are assumed ξ = 0.5 and −1.0 < η < 3.0 for fibrous sheet and 0 < ξ < 3.0 and

−1.0 < η < 3.0 for perforated sheet [9].

6.3.1 Validation of the Mode-matching Scheme

The correctness of the truncated solution is affirmed by reconstructing the match-

ing conditions.

It is necessary to confirm that all the matching conditions have been satisfied.

Higher accuracy is achieved by increasing the truncation parameter N .

We delineate the real and imaginary components of the dimensionless pressures

and normal velocities at the interfaces to substantiate the validity of the solution

scheme.

In Figures 6.2-6.3, the real and imaginary parts of dimensionless pressures and

normal velocities are sketched at interfaces x = ±L to validate the truncated solu-

tion. It can be observed in Figures 6.2-6.3 that the real and imaginary components

of the pressure ψ+
j (−L, y), for j = 1, 2, 3, match exactly to the real and imaginary

parts of ψ4(−L, y). Similarly, real and imaginary parts of pressures ψ−j (L, y), for

j = 1, 2, 3, match exactly to those of ψ4(L, y).
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Figure 6.2: The real and imaginary components of the pressure at x = −L
when ā = 0.05m, b̄ = 0.1m, χ = 0.5 + 0.5i, h̄ = 0.15m, and f = 350Hz.

Figures 6.4-6.5 substantiates that the real and imaginary parts of normal velocity

ψ4x(−L, y) coincides with ψ+
jx(−L, y), for j = 1, 2, 3, over −h < y < h and with

(−1/iχ)ψ4(−L, y) over −h < y < −b and b < y < h.

Further, the real and imaginary parts of normal velocity ψ4x(L, y) match with

ψ−jx(L, y), for j = 1, 2, 3, over −h < y < h and with (1/iχ)ψ4(L, y) over −h < y <

−b and b < y < h.



Analysis of Scattering in a Flexible Trifurcated Lined Waveguide with Step
Discontinuities 132

Nevertheless, the real and imaginary parts of normal velocities are not perfactly

matched at the edges or corners due to the presence of singularities in the geomet-

rical configuration where the velocity fields are not defined.

Moreover, there are assumption of step-discontinuities in matching conditions.

In a nutshell, all the matching conditions of the pressures and normal velocities

are reasonably satisfied by the truncated numerical solution.
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Figure 6.3: The real and imaginary components of the pressure at x = L
when ā = 0.05m, b̄ = 0.1m, χ = 0.5 + 0.5i, h̄ = 0.15m, and f = 350Hz.
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Figure 6.4: The real and imaginary components of the normal velocity at
x = −L when ā = 0.05m, b̄ = 0.1m, χ = 0.5+0.5i, h̄ = 0.15m, and f = 350Hz.

6.3.2 Analysis of Reflected and Absorbed Powers

In this section, we discuss the influence of absorbing linings across the walls of

the expansion chamber, R4, on the reflected and absorbed powers in different

frequency bandwidths with structural continuity or discontinuity.

We separately discuss the influence of resistance ξ and the reactance η on the

power.
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Figure 6.5: The real and imaginary components of the normal velocity at
x = L when ā = 0.05m, b̄ = 0.1m, χ = 0.5 + 0.5i, h̄ = 0.15m, and f = 350Hz.

6.3.2.1 Influence of Reactance on Power

The reflected power (E1) and absorbed power (Eabs) are plotted in Figures 6.6-6.7

over the frequency bandwidth 1Hz ≤ f ≤ 750Hz for different values of reactance

η.

Figures 6.6(a)-6.6(b) correspond to an the central region that includes cavities

(i.e., h̄ > b̄) whereas Figures 6.7(a)-6.7(b) correspond to an central region without

cavities (i.e., h̄ = b̄). .
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Figure 6.6: Energy versus frequency with fibrous lining along the walls of the
expansion chamber when ā = 0.05m, b̄ = 0.1m, and N = 10.

It can be remarked from Figures 6.6(a) and 6.7(a) that the magnitude of reflected

power E1 falls off from 0Hz to 334Hz and then varies up to the cut-off frequency

613Hz.

Beyond this frequency, the magnitude increases again, but not as much as it did

in the low-frequency ranges.

The minima in Figures 6.6(a) and 6.7(a) correspond to the cut-off (on) frequencies

of various high wave-modes that can propagate in the duct.
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(b) Absorbed energy, h̄ = 0.1m

Figure 6.7: Energy versus frequency with fibrous lining along the walls of the
expansion chamber when ā = 0.05m, b̄ = 0.1m, and N = 10.

The notion is based on the behavioral changes of the eigenvalues from complex to

real and vice versa.

The reflected energy decays monotonically with increasing values of η in the fre-

quency band 1Hz < f < 613Hz and then varies inversely for f > 613Hz.
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This is the point where the secondary mode of R±j , for j = 2, 3, becomes cut-on.

Variation of the reflected power in the band 1Hz < f < 613Hz provides evidence

of the variation of the real and imaginary parts of eigenvalues of the expansion

chamber.

Figures 6.6(b) and 6.7(b) indicate that as the value of η increases, the level of the

absorbed energy drops. If we enhance the frequency up to the level of 613Hz, the

absorbed energy steadily rises.
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Figure 6.8: Energy versus duct height (k × ā) with fibrous lining along the
walls of the expansion chamber when f = 1000Hz, b̄ = 0.1m, and N = 10.
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Figure 6.9: Energy versus duct height (k × ā) with fibrous lining along the
walls of the expansion chamber when f = 1000Hz, b̄ = 0.1m, and N = 10.

There is a tilt in the behavior, the energy level drops a little down and then gets

straight.

The sound level fads out gradually as the absorbed energy goes up.

It is seen from Figures 6.6(b) and 6.7(b) that absorbed energy increases for small

values of η and becomes smooth after the first cut-on.



Analysis of Scattering in a Flexible Trifurcated Lined Waveguide with Step
Discontinuities 139

Note that more absorbed energy results in more sound attenuation in the trans-

mitted region.
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Figure 6.10: Energy versus frequency with perforated lining along the walls
of the expansion chamber when ā = 0.05m, b̄ = 0.1m, and N = 10.

The cut-on frequency of the first propagating mode is 613Hz. Thus, the presence

of an absorbent material causes the fundamental mode to be non-planar.

As can be remarked from Figures 6.6(a) and 6.7(a), the reflected energy reduces

significantly with an increase in the acoustic reactance η (especially, for η = 2).

Hence, the rate of attenuation depends on the value of the specific impedance.
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The lining also seems to quickly smooth out the lobe pattern of the reflection after

f = 400Hz approximately.
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Figure 6.11: Energy versus frequency with perforated lining along the walls
of the expansion chamber when ā = 0.05m, b̄ = 0.1m, and N = 10.

Figures 6.8 and 6.9 establish the relationship between the energy distribution and

the structural-discontinuity of the expansion chamber (i.e., when h̄ > b̄ or h̄ = b̄).

Specifically, the reflected and absorbed energies are plotted versus the duct height

(k × ā) at a fixed frequency f = 1000Hz for different values of η.
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It can be found from Figure 6.8(a) that the reflected power increases by increasing

the height of the duct. For a waveguide with cavities in the expansion chamber,

a steady increase in the duct height between the infinite plates gives a decreasing

value of the reflected power. On the other hand, the membranes reflect a significant

portion of the power for small duct heights, but this quickly drops to zero as the

height increases. Moreover, the reflected energy increases by increasing η.
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Figure 6.12: Energy versus duct height (k × ā) with perforated lining along
the walls of the expansion chamber when f = 1000Hz, b̄ = 0.1m, and N = 10.

In Figures 6.8(b) and 6.9(b), the absorbed power (Eabs) is plotted versus the height

of the duct (k × ā) for different values of η. It is observed that the absorbed
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power increases as the channel waveguide width increases, however, an opposite

behavior is observed after the first cut-on (with k × ā > 1.5m). It is noted that

a slightly less amount of energy is absorbed due to the cavities as compared to

the waveguides without cavities. The energy absorption increases more rapidly if

the height of the inner duct is increased. It can be observed that more energy is

absorbed for smaller values of η; see, for example, Figures 6.8(b) and 6.9(b).
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Figure 6.13: Energy versus duct height (k × ā) with perforated lining along
the walls of the expansion chamber when f = 1000Hz, b̄ = 0.1m, and N = 10.

For small duct height (k× ā < 0.8m), the behavior of the absorbed power remains

unchanged for discontinuous waveguides.
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6.3.2.2 Influence of Resistance on Power

The reflected and absorbed energies are plotted in Figures 6.10 − 6.11 against

frequency over the bandwidth 1Hz ≤ f ≤ 750Hz when the central region R4 has

a perforated lining with reactance η = 1 and resistance ξ = 1, 1.8, or 2.6.

It is noticed in Figures 6.10(a) and 6.11(a) that the reflected energy (E1) of the

first propagating mode diminishes in the frequency band 1Hz < f < 360Hz and

then rises up to f = 613Hz, after which it becomes smooth. This behavior of

reflected energy is admitted due to the variation of the real and imaginary parts

of the eigenvalues corresponding to the expansion chamber.

It is also observed that a less amount of energy is reflected when the value of

the acoustic resistance ascends in regime 360Hz < f < 613Hz. Outside this

bandwidth, the behavior reversed in the absence of step-discontinuities. The per-

formance of the absorbed power against frequency is delineated in Figures 6.10(b)

and 6.11(b) for different choices of ξ.

The absorbed energy gradually increases with increasing frequency till the cut-on

mode frequency f = 613Hz and then becomes smooth. This is the point where

the membrane-bounded duct starts propagating and is known as the cut-on point

for the secondary mode. However, a decrease in the absorption is recorded with

an increasing resistance (see, e.g., Figure 6.10(b)).

The behavior of the reflected energy versus non-dimensional height of the inner

duct (i.e., k × ā) is elaborated through Figures 6.12− 6.13 for different choices of

the resistance ξ.

A strictly monotone decrease in the reflected energy is observed in Figure 6.13(a)

for an increase in the duct spacing (k × ā). The pattern of curves is due to the

behavioral changes in the eigenvalues. The cut-on modes are responsible for the

attenuation of the transmitted sound.

In Figures 6.12(b) and 6.13(b), the absorbed power (Eabs) is plotted against height

of the duct for different values of the resistance ξ.
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It is remarked that the absorbed power increases whereas reflection decrease when

the height of the duct (k × ā) is increased.

However, a smooth behavior of the absorbed energies is observed after the first

cut-on when the step-discontinuities are present. Moreover, the curve is quite

smooth, and very few cut-on modes appear in the case of the perforated lining.

In a nutshell, the fibrous case absorbs more energy than the perforated one, and a

discontinuous setting absorbs more energy than a continuous setting. The presence

of extra propagating modes in regions with discontinuities is responsible for the

later impact.

Power is transmitted into those regions, thereby enhancing the reflection. This

device setting is suitable, when more internal reflection is required. In contrast,

the planar central region (without discontinuity) yields less internal reflection than

a discontinuous expansion chamber.



Chapter 7

Conclusions and Future

Recommendations

This chapter summarizes the findings of this dissertation and provides suggestions

for further research in the field.

7.1 Conclusions

In this dissertation, an analysis of wave scattering in bifurcated and trifurcated

waveguides with material contrast and multiple step-discontinuities was performed.

We designed and debated the performance of the waveguide structures for control-

ling active noise transmission. The chapter-wise summary of the dissertation is

provided hereinafter. Chapter 1 depicts the state of the art relevant to the subject

matter along with the avant-garde.

The fundamental concepts that are necessary to understand and analyze the scat-

tering mechanism of the acoustic waves in different waveguide structures, the

derivation of the linear acoustic wave equation along different types of bound-

ary conditions for different waveguide models have been discussed in Chapter 2.

Also, the standard orthogonality relations have been explored based on physical

models in the category of the SL system.

145
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In chapter 3, we have discussed the acoustic scattering in a trifurcated waveguide

involving structural discontinuity at an interface. The inside of the duct regions

contains compressible fluid while the bounding wall conditions are selected to be

rigid and/or soft. By varying inside and bounding characteristics of the regions,

two physical problems are formulated together. The MM approach has been in-

voked to solve the envisaged boundary value problems.

The eigenfunctions along with the appropriate orthogonality attributes in their

concerning regions enable to reshape differential system into a linear algebraic

system that is truncated and solved numerically. The provided solution remains

valid for both discontinuous and planar waveguide structures. It also helps us to

discuss the radiated energy versus the variation of the geometric discontinuity and

the size of the regions.

This problem can be regarded as a prototype problem that provides a benchmark

scheme to model and solve a range of bifurcated or trifurcated waveguide problems

involving geometric discontinuities and various material properties of medium and

bounding walls. It is interesting to notice that the conservation of energy flux

across the duct regions not only confirms the propagation of cut-on duct modes

in various duct sections but also provides a useful check on the accuracy of the

presented algebra.

Besides this, the truncated solution has also been used to reconstruct the matching

of pressure and normal velocity modes at the interfaces. The validation of match-

ing conditions at the interfaces along with the conservation of energy flux across

the duct regions substantiates the appositeness of the MM solution altogether.

In chapter 4, the wave scattering characteristics of a planar trifurcated lined duct

for different bounding properties have been examined. The governing problem

was formulated and solved by considering general expressions of mixed boundary

conditions.

The eigenfunctions enable a differential system to be recast into a linear algebraic

system that may be truncated and solved numerically after utilising the proper

orthogonality relations and matching conditions in relevant regions. The idea was
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to observe the wave scattering behavior of trifurcated lined duct by varying the

bounding properties and size of the duct and observing the field behavior with

and without structural discontinuity.

The existing results for a trifurcated lined duct for different bounding properties

(soft, rigid, impedance) without structural discontinuity have been recovered from

our general solution framework. Moreover, the radiated energy in all duct re-

gions has been computed and discussed through apposite numerical results. It is

depicted that the lined ducts produced lesser noise as compared to hard or soft

ducts. Further, the conservation of energy flux across the duct regions have been

attained successfully, confirming the propagation of cut-on duct modes in various

duct sections and providing validation on the accuracy of the presented algebra.

Besides, the truncated solution has been validated to reconstruct the matching of

pressure and normal velocity modes.

Chapter 5 was dedicated to the study of the radiated and reflected energies in

infinite trifurcated waveguides comprising an expansion chamber. Two silencer

configurations with discontinuous and planar expansion chambers were considered

when the bounding properties of the core region were assumed to be rigid, soft, or

impedance type with absorbent linings. The governing problem was formulated

and solved by considering general expressions of mixed boundary conditions. It

can be observed that energy is absorbed more in the planar case than the discon-

tinuous case and also there is more absorption of energy in a perforated case than

that of a fibrous sheet.

It is noted that the reflected energy was considerably reduced in the increasing

frequency regime. Further, the curve pattern was observed to be smooth with very

few cut-on modes in the case of no fibrous sheet. More cut-on modes are observed

for the discontinuous case. However, the cut-on modes are reduced considerably

when the step of discontinuities is removed. The conservation of energy flux across

the duct regions has been attained successfully, confirming the propagation of cut-

on duct modes in various duct sections and providing validation on the accuracy

of algebra.

The truncated solution has been validated to reconstruct the matching conditions
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of pressure and normal velocity modes. This together justified the use of the MM

technique for these problems. Therefore, it is concluded from obtained results

that the proposed model can be used as a perfect broadband acoustic energy ab-

sorber. The results of this study are an important step forward to understand the

mechanism of waveguide acoustic attenuation and the analysis presented in this

chapter has many applications in duct acoustics and noise reduction systems. We

can take the geometric symmetry in the vertical direction. This increases the cost

of algebra but the results are same.

In chapter 6, the wave scattering characteristics of a flexible trifurcated lined duct

involving an expansion chamber for different bounding properties have been ex-

amined. The governing problem is formulated and solved by considering general

expressions of mixed boundary conditions. The reflected and absorbed energies in

different duct regions have been computed and apposite numerical results are pro-

vided to understand the dependence of the scattering energies on pertinent mate-

rial and geometric parameters. It is observed that the lined ducts with perforated

materials produced lesser noise as compared to the fibrous materials. Further,

the conservation of energy flux across the duct regions was successfully verified,

confirming the propagation of cut-on duct modes in various duct sections and pro-

viding validation of the results.

Furthermore, numerical tests are also conducted to look into the impact of ab-

sorbent linings and edge conditions on flexural mode attenuation. The structure-

borne or fluid-borne mode exits the guiding structure, with visual representations

of the consequences. The use of absorbent linings, on the other hand, is ineffec-

tual for structure-borne mode accidents. This lining, on the other hand, shows a

high level of fluid-borne mode incident absorption. In fluid-borne mode accidents,

however, edge circumstances have just a minimal impact.

Different silencer design also affects attenuation for both structure-borne and fluid-

borne mode occurrences. The majority of acoustic power propagates via structure

in structure-borne mode excitation, whereas the most of energy propagates via

fluid in fluid-borne mode excitation. Only the fluid-borne incidence is affected by

the consideration of absorbent lining along the walls.
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One may consider the geometric symmetry along vertical direction to broken down

the problem into two sub-problems: symmetric sub-problem and anti-symmetric

sub-problem, as is done in [69]. These sub-problems can be solved separately and

then are combined to get the solution of original problem. These sub-problems are

easy to resolve as compared with original problem. However, this practice might

increase the algebraic cost but yields same results.

7.2 Future Recommendations

Future work would be to extend in the following manners.

• The problem of obtaining MM solutions and low frequency approximations

for a flexible channel surrounded by elastic plates/membranes with an in-

serted expansion chamber.

• It is also possible to perform an asymptotic analysis to determine optimal

dispersive relations and low-frequency attenuation conditions. Thus, intro-

ducing material contrast relations that will suit all duct regions would be a

reasonable first step in this direction.

• The two-dimensional problems can be expanded to three-dimensional carte-

sian coordinates (x, y, z) using sound-hard inlet/outlet ducts and an elastic

plate connected at the mouth of the expansion chamber to broaden the scope

of the investigation. The difficulties can be expanded further by introducing

absorption and porosity effects in the finite cavity.

• MM technique was used to solve the problem of a flexible panel bounded by

elastic plates with an inserted expansion chamber in the presence of mean

flow.

• Finally, inverse wave propagation in a trifurcated waveguide is a possible

extension of the difficulties addressed in this dissertation, with the aim of re-

constructing initial data or interfacial conditions from the given information

at the boundaries.
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